Machine learning network implemented by statically scheduled instructions, with system-on-chip

A compiler receives a description of a machine learning network and generates a computer program that implements the machine learning network. The computer program includes statically scheduled instructions that are executed by a mesh of processing elements (Tiles). The instructions executed by the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Attia, Sedny S. J, Chobe, Yogesh Laxmikant, Iskarous, Moenes Zaher, Prasad, Kavitha, Shah, Nishit, Gilliland, Spenser Don, Dhruvanarayan, Srivathsa, Kotler, Reed
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Attia, Sedny S. J
Chobe, Yogesh Laxmikant
Iskarous, Moenes Zaher
Prasad, Kavitha
Shah, Nishit
Gilliland, Spenser Don
Dhruvanarayan, Srivathsa
Kotler, Reed
description A compiler receives a description of a machine learning network and generates a computer program that implements the machine learning network. The computer program includes statically scheduled instructions that are executed by a mesh of processing elements (Tiles). The instructions executed by the Tiles are statically scheduled because the compiler can determine which instructions are executed by which Tiles at what times. For example, for the statically scheduled instructions, there are no conditions, branching or data dependencies that can be resolved only at run-time, and which would affect the timing and order of the execution of the instructions.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11403519B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11403519B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11403519B23</originalsourceid><addsrcrecordid>eNqNjbEOwjAMRLswIOAfzE4lSunACgKxMAErVUgNsUidqHZV9e_JwAcw3enp9G6aPS7GOmIEj6Zj4jcw6hC6D1AbPbbIig08RxA1StZ4n6p12PQ-cWLRrrdKgWUFA6kDGUWxzQPnyRvn2eRlvODil7NseTreDuccY6hRorGY_ur7tSi267IqdvtN-c_mC7RQPY8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning network implemented by statically scheduled instructions, with system-on-chip</title><source>esp@cenet</source><creator>Attia, Sedny S. J ; Chobe, Yogesh Laxmikant ; Iskarous, Moenes Zaher ; Prasad, Kavitha ; Shah, Nishit ; Gilliland, Spenser Don ; Dhruvanarayan, Srivathsa ; Kotler, Reed</creator><creatorcontrib>Attia, Sedny S. J ; Chobe, Yogesh Laxmikant ; Iskarous, Moenes Zaher ; Prasad, Kavitha ; Shah, Nishit ; Gilliland, Spenser Don ; Dhruvanarayan, Srivathsa ; Kotler, Reed</creatorcontrib><description>A compiler receives a description of a machine learning network and generates a computer program that implements the machine learning network. The computer program includes statically scheduled instructions that are executed by a mesh of processing elements (Tiles). The instructions executed by the Tiles are statically scheduled because the compiler can determine which instructions are executed by which Tiles at what times. For example, for the statically scheduled instructions, there are no conditions, branching or data dependencies that can be resolved only at run-time, and which would affect the timing and order of the execution of the instructions.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220802&amp;DB=EPODOC&amp;CC=US&amp;NR=11403519B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220802&amp;DB=EPODOC&amp;CC=US&amp;NR=11403519B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Attia, Sedny S. J</creatorcontrib><creatorcontrib>Chobe, Yogesh Laxmikant</creatorcontrib><creatorcontrib>Iskarous, Moenes Zaher</creatorcontrib><creatorcontrib>Prasad, Kavitha</creatorcontrib><creatorcontrib>Shah, Nishit</creatorcontrib><creatorcontrib>Gilliland, Spenser Don</creatorcontrib><creatorcontrib>Dhruvanarayan, Srivathsa</creatorcontrib><creatorcontrib>Kotler, Reed</creatorcontrib><title>Machine learning network implemented by statically scheduled instructions, with system-on-chip</title><description>A compiler receives a description of a machine learning network and generates a computer program that implements the machine learning network. The computer program includes statically scheduled instructions that are executed by a mesh of processing elements (Tiles). The instructions executed by the Tiles are statically scheduled because the compiler can determine which instructions are executed by which Tiles at what times. For example, for the statically scheduled instructions, there are no conditions, branching or data dependencies that can be resolved only at run-time, and which would affect the timing and order of the execution of the instructions.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjbEOwjAMRLswIOAfzE4lSunACgKxMAErVUgNsUidqHZV9e_JwAcw3enp9G6aPS7GOmIEj6Zj4jcw6hC6D1AbPbbIig08RxA1StZ4n6p12PQ-cWLRrrdKgWUFA6kDGUWxzQPnyRvn2eRlvODil7NseTreDuccY6hRorGY_ur7tSi267IqdvtN-c_mC7RQPY8</recordid><startdate>20220802</startdate><enddate>20220802</enddate><creator>Attia, Sedny S. J</creator><creator>Chobe, Yogesh Laxmikant</creator><creator>Iskarous, Moenes Zaher</creator><creator>Prasad, Kavitha</creator><creator>Shah, Nishit</creator><creator>Gilliland, Spenser Don</creator><creator>Dhruvanarayan, Srivathsa</creator><creator>Kotler, Reed</creator><scope>EVB</scope></search><sort><creationdate>20220802</creationdate><title>Machine learning network implemented by statically scheduled instructions, with system-on-chip</title><author>Attia, Sedny S. J ; Chobe, Yogesh Laxmikant ; Iskarous, Moenes Zaher ; Prasad, Kavitha ; Shah, Nishit ; Gilliland, Spenser Don ; Dhruvanarayan, Srivathsa ; Kotler, Reed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11403519B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Attia, Sedny S. J</creatorcontrib><creatorcontrib>Chobe, Yogesh Laxmikant</creatorcontrib><creatorcontrib>Iskarous, Moenes Zaher</creatorcontrib><creatorcontrib>Prasad, Kavitha</creatorcontrib><creatorcontrib>Shah, Nishit</creatorcontrib><creatorcontrib>Gilliland, Spenser Don</creatorcontrib><creatorcontrib>Dhruvanarayan, Srivathsa</creatorcontrib><creatorcontrib>Kotler, Reed</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Attia, Sedny S. J</au><au>Chobe, Yogesh Laxmikant</au><au>Iskarous, Moenes Zaher</au><au>Prasad, Kavitha</au><au>Shah, Nishit</au><au>Gilliland, Spenser Don</au><au>Dhruvanarayan, Srivathsa</au><au>Kotler, Reed</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning network implemented by statically scheduled instructions, with system-on-chip</title><date>2022-08-02</date><risdate>2022</risdate><abstract>A compiler receives a description of a machine learning network and generates a computer program that implements the machine learning network. The computer program includes statically scheduled instructions that are executed by a mesh of processing elements (Tiles). The instructions executed by the Tiles are statically scheduled because the compiler can determine which instructions are executed by which Tiles at what times. For example, for the statically scheduled instructions, there are no conditions, branching or data dependencies that can be resolved only at run-time, and which would affect the timing and order of the execution of the instructions.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11403519B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Machine learning network implemented by statically scheduled instructions, with system-on-chip
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Attia,%20Sedny%20S.%20J&rft.date=2022-08-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11403519B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true