Machine learning-based software application modernization assessments

Techniques are described for enabling a software modernization assessment service to train and use ML models to automatically generate modernization assessment recommendations for users' software applications and systems. A modernization assessment service collects historical assessment data re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mummidi, Raviprasad V, Zhang, Jiangtao, Panayappan, Ramu
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Mummidi, Raviprasad V
Zhang, Jiangtao
Panayappan, Ramu
description Techniques are described for enabling a software modernization assessment service to train and use ML models to automatically generate modernization assessment recommendations for users' software applications and systems. A modernization assessment service collects historical assessment data reflecting past modernization processes and assessments (e.g., application profile information and associated modernization strategies and tools used in past modernization projects). The modernization assessment service uses the historical assessment data to train one or more ML models (e.g., classifiers) that can be used to automatically identify relevant modernization strategies, services, and tools for given software application or system. Responsive to user requests to generate modernization assessment recommendations, the modernization assessment service can use the trained models to automatically generate modernization recommendations and reports.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11354120B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11354120B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11354120B13</originalsourceid><addsrcrecordid>eNrjZHD1TUzOyMxLVchJTSzKy8xL101KLE5NUSjOTyspTyxKVUgsKMjJTE4syczPU8jNT0kFKqqC8BKLi1OLi3NT80qKeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJfGiwoaGxqYmhkYGToTExagBhTTRM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning-based software application modernization assessments</title><source>esp@cenet</source><creator>Mummidi, Raviprasad V ; Zhang, Jiangtao ; Panayappan, Ramu</creator><creatorcontrib>Mummidi, Raviprasad V ; Zhang, Jiangtao ; Panayappan, Ramu</creatorcontrib><description>Techniques are described for enabling a software modernization assessment service to train and use ML models to automatically generate modernization assessment recommendations for users' software applications and systems. A modernization assessment service collects historical assessment data reflecting past modernization processes and assessments (e.g., application profile information and associated modernization strategies and tools used in past modernization projects). The modernization assessment service uses the historical assessment data to train one or more ML models (e.g., classifiers) that can be used to automatically identify relevant modernization strategies, services, and tools for given software application or system. Responsive to user requests to generate modernization assessment recommendations, the modernization assessment service can use the trained models to automatically generate modernization recommendations and reports.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220607&amp;DB=EPODOC&amp;CC=US&amp;NR=11354120B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220607&amp;DB=EPODOC&amp;CC=US&amp;NR=11354120B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Mummidi, Raviprasad V</creatorcontrib><creatorcontrib>Zhang, Jiangtao</creatorcontrib><creatorcontrib>Panayappan, Ramu</creatorcontrib><title>Machine learning-based software application modernization assessments</title><description>Techniques are described for enabling a software modernization assessment service to train and use ML models to automatically generate modernization assessment recommendations for users' software applications and systems. A modernization assessment service collects historical assessment data reflecting past modernization processes and assessments (e.g., application profile information and associated modernization strategies and tools used in past modernization projects). The modernization assessment service uses the historical assessment data to train one or more ML models (e.g., classifiers) that can be used to automatically identify relevant modernization strategies, services, and tools for given software application or system. Responsive to user requests to generate modernization assessment recommendations, the modernization assessment service can use the trained models to automatically generate modernization recommendations and reports.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD1TUzOyMxLVchJTSzKy8xL101KLE5NUSjOTyspTyxKVUgsKMjJTE4syczPU8jNT0kFKqqC8BKLi1OLi3NT80qKeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJfGiwoaGxqYmhkYGToTExagBhTTRM</recordid><startdate>20220607</startdate><enddate>20220607</enddate><creator>Mummidi, Raviprasad V</creator><creator>Zhang, Jiangtao</creator><creator>Panayappan, Ramu</creator><scope>EVB</scope></search><sort><creationdate>20220607</creationdate><title>Machine learning-based software application modernization assessments</title><author>Mummidi, Raviprasad V ; Zhang, Jiangtao ; Panayappan, Ramu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11354120B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Mummidi, Raviprasad V</creatorcontrib><creatorcontrib>Zhang, Jiangtao</creatorcontrib><creatorcontrib>Panayappan, Ramu</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mummidi, Raviprasad V</au><au>Zhang, Jiangtao</au><au>Panayappan, Ramu</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning-based software application modernization assessments</title><date>2022-06-07</date><risdate>2022</risdate><abstract>Techniques are described for enabling a software modernization assessment service to train and use ML models to automatically generate modernization assessment recommendations for users' software applications and systems. A modernization assessment service collects historical assessment data reflecting past modernization processes and assessments (e.g., application profile information and associated modernization strategies and tools used in past modernization projects). The modernization assessment service uses the historical assessment data to train one or more ML models (e.g., classifiers) that can be used to automatically identify relevant modernization strategies, services, and tools for given software application or system. Responsive to user requests to generate modernization assessment recommendations, the modernization assessment service can use the trained models to automatically generate modernization recommendations and reports.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11354120B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Machine learning-based software application modernization assessments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Mummidi,%20Raviprasad%20V&rft.date=2022-06-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11354120B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true