Machine learning-based software application modernization assessments
Techniques are described for enabling a software modernization assessment service to train and use ML models to automatically generate modernization assessment recommendations for users' software applications and systems. A modernization assessment service collects historical assessment data re...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Mummidi, Raviprasad V Zhang, Jiangtao Panayappan, Ramu |
description | Techniques are described for enabling a software modernization assessment service to train and use ML models to automatically generate modernization assessment recommendations for users' software applications and systems. A modernization assessment service collects historical assessment data reflecting past modernization processes and assessments (e.g., application profile information and associated modernization strategies and tools used in past modernization projects). The modernization assessment service uses the historical assessment data to train one or more ML models (e.g., classifiers) that can be used to automatically identify relevant modernization strategies, services, and tools for given software application or system. Responsive to user requests to generate modernization assessment recommendations, the modernization assessment service can use the trained models to automatically generate modernization recommendations and reports. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11354120B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11354120B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11354120B13</originalsourceid><addsrcrecordid>eNrjZHD1TUzOyMxLVchJTSzKy8xL101KLE5NUSjOTyspTyxKVUgsKMjJTE4syczPU8jNT0kFKqqC8BKLi1OLi3NT80qKeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJfGiwoaGxqYmhkYGToTExagBhTTRM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning-based software application modernization assessments</title><source>esp@cenet</source><creator>Mummidi, Raviprasad V ; Zhang, Jiangtao ; Panayappan, Ramu</creator><creatorcontrib>Mummidi, Raviprasad V ; Zhang, Jiangtao ; Panayappan, Ramu</creatorcontrib><description>Techniques are described for enabling a software modernization assessment service to train and use ML models to automatically generate modernization assessment recommendations for users' software applications and systems. A modernization assessment service collects historical assessment data reflecting past modernization processes and assessments (e.g., application profile information and associated modernization strategies and tools used in past modernization projects). The modernization assessment service uses the historical assessment data to train one or more ML models (e.g., classifiers) that can be used to automatically identify relevant modernization strategies, services, and tools for given software application or system. Responsive to user requests to generate modernization assessment recommendations, the modernization assessment service can use the trained models to automatically generate modernization recommendations and reports.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220607&DB=EPODOC&CC=US&NR=11354120B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220607&DB=EPODOC&CC=US&NR=11354120B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Mummidi, Raviprasad V</creatorcontrib><creatorcontrib>Zhang, Jiangtao</creatorcontrib><creatorcontrib>Panayappan, Ramu</creatorcontrib><title>Machine learning-based software application modernization assessments</title><description>Techniques are described for enabling a software modernization assessment service to train and use ML models to automatically generate modernization assessment recommendations for users' software applications and systems. A modernization assessment service collects historical assessment data reflecting past modernization processes and assessments (e.g., application profile information and associated modernization strategies and tools used in past modernization projects). The modernization assessment service uses the historical assessment data to train one or more ML models (e.g., classifiers) that can be used to automatically identify relevant modernization strategies, services, and tools for given software application or system. Responsive to user requests to generate modernization assessment recommendations, the modernization assessment service can use the trained models to automatically generate modernization recommendations and reports.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD1TUzOyMxLVchJTSzKy8xL101KLE5NUSjOTyspTyxKVUgsKMjJTE4syczPU8jNT0kFKqqC8BKLi1OLi3NT80qKeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJfGiwoaGxqYmhkYGToTExagBhTTRM</recordid><startdate>20220607</startdate><enddate>20220607</enddate><creator>Mummidi, Raviprasad V</creator><creator>Zhang, Jiangtao</creator><creator>Panayappan, Ramu</creator><scope>EVB</scope></search><sort><creationdate>20220607</creationdate><title>Machine learning-based software application modernization assessments</title><author>Mummidi, Raviprasad V ; Zhang, Jiangtao ; Panayappan, Ramu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11354120B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Mummidi, Raviprasad V</creatorcontrib><creatorcontrib>Zhang, Jiangtao</creatorcontrib><creatorcontrib>Panayappan, Ramu</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mummidi, Raviprasad V</au><au>Zhang, Jiangtao</au><au>Panayappan, Ramu</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning-based software application modernization assessments</title><date>2022-06-07</date><risdate>2022</risdate><abstract>Techniques are described for enabling a software modernization assessment service to train and use ML models to automatically generate modernization assessment recommendations for users' software applications and systems. A modernization assessment service collects historical assessment data reflecting past modernization processes and assessments (e.g., application profile information and associated modernization strategies and tools used in past modernization projects). The modernization assessment service uses the historical assessment data to train one or more ML models (e.g., classifiers) that can be used to automatically identify relevant modernization strategies, services, and tools for given software application or system. Responsive to user requests to generate modernization assessment recommendations, the modernization assessment service can use the trained models to automatically generate modernization recommendations and reports.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11354120B1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | Machine learning-based software application modernization assessments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Mummidi,%20Raviprasad%20V&rft.date=2022-06-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11354120B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |