Refining event triggers using machine learning model feedback

A vehicle device may execute one or more neural networks (and/or other artificial intelligence), such as based on input from one or more of the cameras and/or other sensors associated with the dash cam, to intelligently detect safety events in real-time. The vehicle device may further pass the input...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tuan, Brian, Akhtar, Muhammad Ali, Kellerman, Bruce, Srinivasan, Sharan, Shieh, Vincent, Bicket, John, Wang, Jing, Acevedo, Abner Ayala
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Tuan, Brian
Akhtar, Muhammad Ali
Kellerman, Bruce
Srinivasan, Sharan
Shieh, Vincent
Bicket, John
Wang, Jing
Acevedo, Abner Ayala
description A vehicle device may execute one or more neural networks (and/or other artificial intelligence), such as based on input from one or more of the cameras and/or other sensors associated with the dash cam, to intelligently detect safety events in real-time. The vehicle device may further pass the input to a backend server for further analysis and the backend server can detect safety events based on the input. The vehicle device may analyze the output of the vehicle device and the output of the backend server to determine whether the output of the vehicle device is correct. If the output of the vehicle device is incorrect, the vehicle device can adjust how the vehicle device identifies safety events.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11352013B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11352013B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11352013B13</originalsourceid><addsrcrecordid>eNrjZLANSk3LzMvMS1dILUvNK1EoKcpMT08tKlYoLQYJ5iYmZ2TmpSrkpCYWgVXl5qek5iikpaamJCUmZ_MwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUkvjQYENDY1MjA0NjJ0NjYtQAADHtMFI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Refining event triggers using machine learning model feedback</title><source>esp@cenet</source><creator>Tuan, Brian ; Akhtar, Muhammad Ali ; Kellerman, Bruce ; Srinivasan, Sharan ; Shieh, Vincent ; Bicket, John ; Wang, Jing ; Acevedo, Abner Ayala</creator><creatorcontrib>Tuan, Brian ; Akhtar, Muhammad Ali ; Kellerman, Bruce ; Srinivasan, Sharan ; Shieh, Vincent ; Bicket, John ; Wang, Jing ; Acevedo, Abner Ayala</creatorcontrib><description>A vehicle device may execute one or more neural networks (and/or other artificial intelligence), such as based on input from one or more of the cameras and/or other sensors associated with the dash cam, to intelligently detect safety events in real-time. The vehicle device may further pass the input to a backend server for further analysis and the backend server can detect safety events based on the input. The vehicle device may analyze the output of the vehicle device and the output of the backend server to determine whether the output of the vehicle device is correct. If the output of the vehicle device is incorrect, the vehicle device can adjust how the vehicle device identifies safety events.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION ; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PERFORMING OPERATIONS ; PHYSICS ; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT ; TRANSPORTING ; VEHICLES IN GENERAL</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220607&amp;DB=EPODOC&amp;CC=US&amp;NR=11352013B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220607&amp;DB=EPODOC&amp;CC=US&amp;NR=11352013B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Tuan, Brian</creatorcontrib><creatorcontrib>Akhtar, Muhammad Ali</creatorcontrib><creatorcontrib>Kellerman, Bruce</creatorcontrib><creatorcontrib>Srinivasan, Sharan</creatorcontrib><creatorcontrib>Shieh, Vincent</creatorcontrib><creatorcontrib>Bicket, John</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Acevedo, Abner Ayala</creatorcontrib><title>Refining event triggers using machine learning model feedback</title><description>A vehicle device may execute one or more neural networks (and/or other artificial intelligence), such as based on input from one or more of the cameras and/or other sensors associated with the dash cam, to intelligently detect safety events in real-time. The vehicle device may further pass the input to a backend server for further analysis and the backend server can detect safety events based on the input. The vehicle device may analyze the output of the vehicle device and the output of the backend server to determine whether the output of the vehicle device is correct. If the output of the vehicle device is incorrect, the vehicle device can adjust how the vehicle device identifies safety events.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION</subject><subject>CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT</subject><subject>TRANSPORTING</subject><subject>VEHICLES IN GENERAL</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLANSk3LzMvMS1dILUvNK1EoKcpMT08tKlYoLQYJ5iYmZ2TmpSrkpCYWgVXl5qek5iikpaamJCUmZ_MwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUkvjQYENDY1MjA0NjJ0NjYtQAADHtMFI</recordid><startdate>20220607</startdate><enddate>20220607</enddate><creator>Tuan, Brian</creator><creator>Akhtar, Muhammad Ali</creator><creator>Kellerman, Bruce</creator><creator>Srinivasan, Sharan</creator><creator>Shieh, Vincent</creator><creator>Bicket, John</creator><creator>Wang, Jing</creator><creator>Acevedo, Abner Ayala</creator><scope>EVB</scope></search><sort><creationdate>20220607</creationdate><title>Refining event triggers using machine learning model feedback</title><author>Tuan, Brian ; Akhtar, Muhammad Ali ; Kellerman, Bruce ; Srinivasan, Sharan ; Shieh, Vincent ; Bicket, John ; Wang, Jing ; Acevedo, Abner Ayala</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11352013B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION</topic><topic>CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT</topic><topic>TRANSPORTING</topic><topic>VEHICLES IN GENERAL</topic><toplevel>online_resources</toplevel><creatorcontrib>Tuan, Brian</creatorcontrib><creatorcontrib>Akhtar, Muhammad Ali</creatorcontrib><creatorcontrib>Kellerman, Bruce</creatorcontrib><creatorcontrib>Srinivasan, Sharan</creatorcontrib><creatorcontrib>Shieh, Vincent</creatorcontrib><creatorcontrib>Bicket, John</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Acevedo, Abner Ayala</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tuan, Brian</au><au>Akhtar, Muhammad Ali</au><au>Kellerman, Bruce</au><au>Srinivasan, Sharan</au><au>Shieh, Vincent</au><au>Bicket, John</au><au>Wang, Jing</au><au>Acevedo, Abner Ayala</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Refining event triggers using machine learning model feedback</title><date>2022-06-07</date><risdate>2022</risdate><abstract>A vehicle device may execute one or more neural networks (and/or other artificial intelligence), such as based on input from one or more of the cameras and/or other sensors associated with the dash cam, to intelligently detect safety events in real-time. The vehicle device may further pass the input to a backend server for further analysis and the backend server can detect safety events based on the input. The vehicle device may analyze the output of the vehicle device and the output of the backend server to determine whether the output of the vehicle device is correct. If the output of the vehicle device is incorrect, the vehicle device can adjust how the vehicle device identifies safety events.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11352013B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION
CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PERFORMING OPERATIONS
PHYSICS
ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT
TRANSPORTING
VEHICLES IN GENERAL
title Refining event triggers using machine learning model feedback
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Tuan,%20Brian&rft.date=2022-06-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11352013B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true