Training method for image semantic segmentation model and server

Embodiments of this application disclose a method for training an image semantic segmentation model performed at a server, to locate all object regions in a raw image, thereby improving the segmentation quality of image semantic segmentation. The method includes: obtaining a raw image used for model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Jie, Zequn
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Jie, Zequn
description Embodiments of this application disclose a method for training an image semantic segmentation model performed at a server, to locate all object regions in a raw image, thereby improving the segmentation quality of image semantic segmentation. The method includes: obtaining a raw image used for model training; performing a full-image classification annotation on the raw image at different dilation magnifications by applying a multi-magnification dilated convolutional neural network model to the raw image, and obtaining global object location maps in the raw image at different degrees of dispersion corresponding to the different dilation magnifications, wherein a degree of dispersion is used for indicating a distribution of a target object on an object region positioned by the multi-magnification dilated convolutional neural network model at a dilation magnification corresponding to the degree of dispersion; and training an image semantic segmentation network model using the global object location maps as supervision information.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11348249B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11348249B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11348249B23</originalsourceid><addsrcrecordid>eNrjZHAIKUrMzMvMS1fITS3JyE9RSMsvUsjMTUxPVShOzU3MK8lMBjLSc1PzShJLMvPzFHLzU1JzFBLzUoDCRWWpRTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDQ2MTCyMTSyciYGDUA3xcxnw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Training method for image semantic segmentation model and server</title><source>esp@cenet</source><creator>Jie, Zequn</creator><creatorcontrib>Jie, Zequn</creatorcontrib><description>Embodiments of this application disclose a method for training an image semantic segmentation model performed at a server, to locate all object regions in a raw image, thereby improving the segmentation quality of image semantic segmentation. The method includes: obtaining a raw image used for model training; performing a full-image classification annotation on the raw image at different dilation magnifications by applying a multi-magnification dilated convolutional neural network model to the raw image, and obtaining global object location maps in the raw image at different degrees of dispersion corresponding to the different dilation magnifications, wherein a degree of dispersion is used for indicating a distribution of a target object on an object region positioned by the multi-magnification dilated convolutional neural network model at a dilation magnification corresponding to the degree of dispersion; and training an image semantic segmentation network model using the global object location maps as supervision information.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220531&amp;DB=EPODOC&amp;CC=US&amp;NR=11348249B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220531&amp;DB=EPODOC&amp;CC=US&amp;NR=11348249B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Jie, Zequn</creatorcontrib><title>Training method for image semantic segmentation model and server</title><description>Embodiments of this application disclose a method for training an image semantic segmentation model performed at a server, to locate all object regions in a raw image, thereby improving the segmentation quality of image semantic segmentation. The method includes: obtaining a raw image used for model training; performing a full-image classification annotation on the raw image at different dilation magnifications by applying a multi-magnification dilated convolutional neural network model to the raw image, and obtaining global object location maps in the raw image at different degrees of dispersion corresponding to the different dilation magnifications, wherein a degree of dispersion is used for indicating a distribution of a target object on an object region positioned by the multi-magnification dilated convolutional neural network model at a dilation magnification corresponding to the degree of dispersion; and training an image semantic segmentation network model using the global object location maps as supervision information.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAIKUrMzMvMS1fITS3JyE9RSMsvUsjMTUxPVShOzU3MK8lMBjLSc1PzShJLMvPzFHLzU1JzFBLzUoDCRWWpRTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDQ2MTCyMTSyciYGDUA3xcxnw</recordid><startdate>20220531</startdate><enddate>20220531</enddate><creator>Jie, Zequn</creator><scope>EVB</scope></search><sort><creationdate>20220531</creationdate><title>Training method for image semantic segmentation model and server</title><author>Jie, Zequn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11348249B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Jie, Zequn</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jie, Zequn</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Training method for image semantic segmentation model and server</title><date>2022-05-31</date><risdate>2022</risdate><abstract>Embodiments of this application disclose a method for training an image semantic segmentation model performed at a server, to locate all object regions in a raw image, thereby improving the segmentation quality of image semantic segmentation. The method includes: obtaining a raw image used for model training; performing a full-image classification annotation on the raw image at different dilation magnifications by applying a multi-magnification dilated convolutional neural network model to the raw image, and obtaining global object location maps in the raw image at different degrees of dispersion corresponding to the different dilation magnifications, wherein a degree of dispersion is used for indicating a distribution of a target object on an object region positioned by the multi-magnification dilated convolutional neural network model at a dilation magnification corresponding to the degree of dispersion; and training an image semantic segmentation network model using the global object location maps as supervision information.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11348249B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Training method for image semantic segmentation model and server
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T19%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Jie,%20Zequn&rft.date=2022-05-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11348249B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true