Methods, controllers and systems for the control of distribution systems using a neural network architecture

A deep approximation neural network architecture which extrapolates data over unseen states for demand response applications in order to control distribution systems like product distribution systems of which energy distribution systems, e.g. heat or electrical power distribution, are one example. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vrancx, Peter, Claessens, Bert
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Vrancx, Peter
Claessens, Bert
description A deep approximation neural network architecture which extrapolates data over unseen states for demand response applications in order to control distribution systems like product distribution systems of which energy distribution systems, e.g. heat or electrical power distribution, are one example. The method is a model-free control technique mainly in the form of Reinforcement Learning (RL) where a controller learns from interaction with the system to be controlled to control product distributions of which energy distribution systems, e.g. heat or electrical power distribution, are one example.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11341396B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11341396B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11341396B23</originalsourceid><addsrcrecordid>eNqNi7EOAUEQQLdRCP5h9BRnRaIlRKNCfVl7c3Zj7VxmZiP-3hWoVa947w1NOqIGamQGnrIypYQs4HID8hLFh0BLDBrw64FaaKIox2vRSPnXFYn5Bg4yFnaphz6J7-DYh6jotTCOzaB1SXDy4chM97vz9jDHjmqUznnst_pyqiq7rOx6tVnYf5o3omhC8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Methods, controllers and systems for the control of distribution systems using a neural network architecture</title><source>esp@cenet</source><creator>Vrancx, Peter ; Claessens, Bert</creator><creatorcontrib>Vrancx, Peter ; Claessens, Bert</creatorcontrib><description>A deep approximation neural network architecture which extrapolates data over unseen states for demand response applications in order to control distribution systems like product distribution systems of which energy distribution systems, e.g. heat or electrical power distribution, are one example. The method is a model-free control technique mainly in the form of Reinforcement Learning (RL) where a controller learns from interaction with the system to be controlled to control product distributions of which energy distribution systems, e.g. heat or electrical power distribution, are one example.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220524&amp;DB=EPODOC&amp;CC=US&amp;NR=11341396B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220524&amp;DB=EPODOC&amp;CC=US&amp;NR=11341396B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Vrancx, Peter</creatorcontrib><creatorcontrib>Claessens, Bert</creatorcontrib><title>Methods, controllers and systems for the control of distribution systems using a neural network architecture</title><description>A deep approximation neural network architecture which extrapolates data over unseen states for demand response applications in order to control distribution systems like product distribution systems of which energy distribution systems, e.g. heat or electrical power distribution, are one example. The method is a model-free control technique mainly in the form of Reinforcement Learning (RL) where a controller learns from interaction with the system to be controlled to control product distributions of which energy distribution systems, e.g. heat or electrical power distribution, are one example.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EOAUEQQLdRCP5h9BRnRaIlRKNCfVl7c3Zj7VxmZiP-3hWoVa947w1NOqIGamQGnrIypYQs4HID8hLFh0BLDBrw64FaaKIox2vRSPnXFYn5Bg4yFnaphz6J7-DYh6jotTCOzaB1SXDy4chM97vz9jDHjmqUznnst_pyqiq7rOx6tVnYf5o3omhC8g</recordid><startdate>20220524</startdate><enddate>20220524</enddate><creator>Vrancx, Peter</creator><creator>Claessens, Bert</creator><scope>EVB</scope></search><sort><creationdate>20220524</creationdate><title>Methods, controllers and systems for the control of distribution systems using a neural network architecture</title><author>Vrancx, Peter ; Claessens, Bert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11341396B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Vrancx, Peter</creatorcontrib><creatorcontrib>Claessens, Bert</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vrancx, Peter</au><au>Claessens, Bert</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Methods, controllers and systems for the control of distribution systems using a neural network architecture</title><date>2022-05-24</date><risdate>2022</risdate><abstract>A deep approximation neural network architecture which extrapolates data over unseen states for demand response applications in order to control distribution systems like product distribution systems of which energy distribution systems, e.g. heat or electrical power distribution, are one example. The method is a model-free control technique mainly in the form of Reinforcement Learning (RL) where a controller learns from interaction with the system to be controlled to control product distributions of which energy distribution systems, e.g. heat or electrical power distribution, are one example.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11341396B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONTROL OR REGULATING SYSTEMS IN GENERAL
CONTROLLING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
FUNCTIONAL ELEMENTS OF SUCH SYSTEMS
MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS
PHYSICS
REGULATING
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Methods, controllers and systems for the control of distribution systems using a neural network architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Vrancx,%20Peter&rft.date=2022-05-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11341396B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true