Methods, controllers and systems for the control of distribution systems using a neural network architecture
A deep approximation neural network architecture which extrapolates data over unseen states for demand response applications in order to control distribution systems like product distribution systems of which energy distribution systems, e.g. heat or electrical power distribution, are one example. T...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Vrancx, Peter Claessens, Bert |
description | A deep approximation neural network architecture which extrapolates data over unseen states for demand response applications in order to control distribution systems like product distribution systems of which energy distribution systems, e.g. heat or electrical power distribution, are one example. The method is a model-free control technique mainly in the form of Reinforcement Learning (RL) where a controller learns from interaction with the system to be controlled to control product distributions of which energy distribution systems, e.g. heat or electrical power distribution, are one example. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11341396B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11341396B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11341396B23</originalsourceid><addsrcrecordid>eNqNi7EOAUEQQLdRCP5h9BRnRaIlRKNCfVl7c3Zj7VxmZiP-3hWoVa947w1NOqIGamQGnrIypYQs4HID8hLFh0BLDBrw64FaaKIox2vRSPnXFYn5Bg4yFnaphz6J7-DYh6jotTCOzaB1SXDy4chM97vz9jDHjmqUznnst_pyqiq7rOx6tVnYf5o3omhC8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Methods, controllers and systems for the control of distribution systems using a neural network architecture</title><source>esp@cenet</source><creator>Vrancx, Peter ; Claessens, Bert</creator><creatorcontrib>Vrancx, Peter ; Claessens, Bert</creatorcontrib><description>A deep approximation neural network architecture which extrapolates data over unseen states for demand response applications in order to control distribution systems like product distribution systems of which energy distribution systems, e.g. heat or electrical power distribution, are one example. The method is a model-free control technique mainly in the form of Reinforcement Learning (RL) where a controller learns from interaction with the system to be controlled to control product distributions of which energy distribution systems, e.g. heat or electrical power distribution, are one example.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220524&DB=EPODOC&CC=US&NR=11341396B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220524&DB=EPODOC&CC=US&NR=11341396B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Vrancx, Peter</creatorcontrib><creatorcontrib>Claessens, Bert</creatorcontrib><title>Methods, controllers and systems for the control of distribution systems using a neural network architecture</title><description>A deep approximation neural network architecture which extrapolates data over unseen states for demand response applications in order to control distribution systems like product distribution systems of which energy distribution systems, e.g. heat or electrical power distribution, are one example. The method is a model-free control technique mainly in the form of Reinforcement Learning (RL) where a controller learns from interaction with the system to be controlled to control product distributions of which energy distribution systems, e.g. heat or electrical power distribution, are one example.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EOAUEQQLdRCP5h9BRnRaIlRKNCfVl7c3Zj7VxmZiP-3hWoVa947w1NOqIGamQGnrIypYQs4HID8hLFh0BLDBrw64FaaKIox2vRSPnXFYn5Bg4yFnaphz6J7-DYh6jotTCOzaB1SXDy4chM97vz9jDHjmqUznnst_pyqiq7rOx6tVnYf5o3omhC8g</recordid><startdate>20220524</startdate><enddate>20220524</enddate><creator>Vrancx, Peter</creator><creator>Claessens, Bert</creator><scope>EVB</scope></search><sort><creationdate>20220524</creationdate><title>Methods, controllers and systems for the control of distribution systems using a neural network architecture</title><author>Vrancx, Peter ; Claessens, Bert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11341396B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Vrancx, Peter</creatorcontrib><creatorcontrib>Claessens, Bert</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vrancx, Peter</au><au>Claessens, Bert</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Methods, controllers and systems for the control of distribution systems using a neural network architecture</title><date>2022-05-24</date><risdate>2022</risdate><abstract>A deep approximation neural network architecture which extrapolates data over unseen states for demand response applications in order to control distribution systems like product distribution systems of which energy distribution systems, e.g. heat or electrical power distribution, are one example. The method is a model-free control technique mainly in the form of Reinforcement Learning (RL) where a controller learns from interaction with the system to be controlled to control product distributions of which energy distribution systems, e.g. heat or electrical power distribution, are one example.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11341396B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONTROL OR REGULATING SYSTEMS IN GENERAL CONTROLLING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES FUNCTIONAL ELEMENTS OF SUCH SYSTEMS MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS PHYSICS REGULATING SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Methods, controllers and systems for the control of distribution systems using a neural network architecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Vrancx,%20Peter&rft.date=2022-05-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11341396B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |