Prefetching based on historical use and real-time signals
Methods, systems and computer program products are provided for prefetching based on historical use and real-time signals. Forecast models may be configured to forecast whether to prefetch information (e.g. keys responsive to queries) for future time intervals based on historical use and internal or...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Dhanasekaran, Sriram Leite Pinheiro de Paiva, Joao Celestino Pugachev, Dmitry |
description | Methods, systems and computer program products are provided for prefetching based on historical use and real-time signals. Forecast models may be configured to forecast whether to prefetch information (e.g. keys responsive to queries) for future time intervals based on historical use and internal or external signals that may influence forecasts, such as prevailing conditions. Historical use of keys may be analyzed for patterns and trends with multiple seasonalities per category and/or per key. Time series data and forecasts may be indexed by cache categories and time intervals. Forecast models may be trainable, optimizable, configurable and/or auto-correcting on a per-category and/or a per-key basis. Forecast precision indicators, confidence indicators and configurable thresholds may be used to optimize performance. Operations may be distributed among multiple servers. Tasks may be time-distributed by offsets. Cached information may be assigned a time to live (TTL) independent of other cached information. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11341097B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11341097B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11341097B23</originalsourceid><addsrcrecordid>eNrjZLAMKEpNSy1JzsjMS1dISixOTVHIz1PIyCwuyS_KTE7MUSgtTlVIzEtRKEpNzNEtycxNVSjOTM9LzCnmYWBNA1KpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDQ2MTQwNLcyciYGDUALGQulg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Prefetching based on historical use and real-time signals</title><source>esp@cenet</source><creator>Dhanasekaran, Sriram ; Leite Pinheiro de Paiva, Joao Celestino ; Pugachev, Dmitry</creator><creatorcontrib>Dhanasekaran, Sriram ; Leite Pinheiro de Paiva, Joao Celestino ; Pugachev, Dmitry</creatorcontrib><description>Methods, systems and computer program products are provided for prefetching based on historical use and real-time signals. Forecast models may be configured to forecast whether to prefetch information (e.g. keys responsive to queries) for future time intervals based on historical use and internal or external signals that may influence forecasts, such as prevailing conditions. Historical use of keys may be analyzed for patterns and trends with multiple seasonalities per category and/or per key. Time series data and forecasts may be indexed by cache categories and time intervals. Forecast models may be trainable, optimizable, configurable and/or auto-correcting on a per-category and/or a per-key basis. Forecast precision indicators, confidence indicators and configurable thresholds may be used to optimize performance. Operations may be distributed among multiple servers. Tasks may be time-distributed by offsets. Cached information may be assigned a time to live (TTL) independent of other cached information.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220524&DB=EPODOC&CC=US&NR=11341097B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220524&DB=EPODOC&CC=US&NR=11341097B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Dhanasekaran, Sriram</creatorcontrib><creatorcontrib>Leite Pinheiro de Paiva, Joao Celestino</creatorcontrib><creatorcontrib>Pugachev, Dmitry</creatorcontrib><title>Prefetching based on historical use and real-time signals</title><description>Methods, systems and computer program products are provided for prefetching based on historical use and real-time signals. Forecast models may be configured to forecast whether to prefetch information (e.g. keys responsive to queries) for future time intervals based on historical use and internal or external signals that may influence forecasts, such as prevailing conditions. Historical use of keys may be analyzed for patterns and trends with multiple seasonalities per category and/or per key. Time series data and forecasts may be indexed by cache categories and time intervals. Forecast models may be trainable, optimizable, configurable and/or auto-correcting on a per-category and/or a per-key basis. Forecast precision indicators, confidence indicators and configurable thresholds may be used to optimize performance. Operations may be distributed among multiple servers. Tasks may be time-distributed by offsets. Cached information may be assigned a time to live (TTL) independent of other cached information.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAMKEpNSy1JzsjMS1dISixOTVHIz1PIyCwuyS_KTE7MUSgtTlVIzEtRKEpNzNEtycxNVSjOTM9LzCnmYWBNA1KpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDQ2MTQwNLcyciYGDUALGQulg</recordid><startdate>20220524</startdate><enddate>20220524</enddate><creator>Dhanasekaran, Sriram</creator><creator>Leite Pinheiro de Paiva, Joao Celestino</creator><creator>Pugachev, Dmitry</creator><scope>EVB</scope></search><sort><creationdate>20220524</creationdate><title>Prefetching based on historical use and real-time signals</title><author>Dhanasekaran, Sriram ; Leite Pinheiro de Paiva, Joao Celestino ; Pugachev, Dmitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11341097B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Dhanasekaran, Sriram</creatorcontrib><creatorcontrib>Leite Pinheiro de Paiva, Joao Celestino</creatorcontrib><creatorcontrib>Pugachev, Dmitry</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dhanasekaran, Sriram</au><au>Leite Pinheiro de Paiva, Joao Celestino</au><au>Pugachev, Dmitry</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Prefetching based on historical use and real-time signals</title><date>2022-05-24</date><risdate>2022</risdate><abstract>Methods, systems and computer program products are provided for prefetching based on historical use and real-time signals. Forecast models may be configured to forecast whether to prefetch information (e.g. keys responsive to queries) for future time intervals based on historical use and internal or external signals that may influence forecasts, such as prevailing conditions. Historical use of keys may be analyzed for patterns and trends with multiple seasonalities per category and/or per key. Time series data and forecasts may be indexed by cache categories and time intervals. Forecast models may be trainable, optimizable, configurable and/or auto-correcting on a per-category and/or a per-key basis. Forecast precision indicators, confidence indicators and configurable thresholds may be used to optimize performance. Operations may be distributed among multiple servers. Tasks may be time-distributed by offsets. Cached information may be assigned a time to live (TTL) independent of other cached information.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11341097B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Prefetching based on historical use and real-time signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Dhanasekaran,%20Sriram&rft.date=2022-05-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11341097B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |