Prefetching based on historical use and real-time signals

Methods, systems and computer program products are provided for prefetching based on historical use and real-time signals. Forecast models may be configured to forecast whether to prefetch information (e.g. keys responsive to queries) for future time intervals based on historical use and internal or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dhanasekaran, Sriram, Leite Pinheiro de Paiva, Joao Celestino, Pugachev, Dmitry
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Dhanasekaran, Sriram
Leite Pinheiro de Paiva, Joao Celestino
Pugachev, Dmitry
description Methods, systems and computer program products are provided for prefetching based on historical use and real-time signals. Forecast models may be configured to forecast whether to prefetch information (e.g. keys responsive to queries) for future time intervals based on historical use and internal or external signals that may influence forecasts, such as prevailing conditions. Historical use of keys may be analyzed for patterns and trends with multiple seasonalities per category and/or per key. Time series data and forecasts may be indexed by cache categories and time intervals. Forecast models may be trainable, optimizable, configurable and/or auto-correcting on a per-category and/or a per-key basis. Forecast precision indicators, confidence indicators and configurable thresholds may be used to optimize performance. Operations may be distributed among multiple servers. Tasks may be time-distributed by offsets. Cached information may be assigned a time to live (TTL) independent of other cached information.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11341097B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11341097B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11341097B23</originalsourceid><addsrcrecordid>eNrjZLAMKEpNSy1JzsjMS1dISixOTVHIz1PIyCwuyS_KTE7MUSgtTlVIzEtRKEpNzNEtycxNVSjOTM9LzCnmYWBNA1KpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDQ2MTQwNLcyciYGDUALGQulg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Prefetching based on historical use and real-time signals</title><source>esp@cenet</source><creator>Dhanasekaran, Sriram ; Leite Pinheiro de Paiva, Joao Celestino ; Pugachev, Dmitry</creator><creatorcontrib>Dhanasekaran, Sriram ; Leite Pinheiro de Paiva, Joao Celestino ; Pugachev, Dmitry</creatorcontrib><description>Methods, systems and computer program products are provided for prefetching based on historical use and real-time signals. Forecast models may be configured to forecast whether to prefetch information (e.g. keys responsive to queries) for future time intervals based on historical use and internal or external signals that may influence forecasts, such as prevailing conditions. Historical use of keys may be analyzed for patterns and trends with multiple seasonalities per category and/or per key. Time series data and forecasts may be indexed by cache categories and time intervals. Forecast models may be trainable, optimizable, configurable and/or auto-correcting on a per-category and/or a per-key basis. Forecast precision indicators, confidence indicators and configurable thresholds may be used to optimize performance. Operations may be distributed among multiple servers. Tasks may be time-distributed by offsets. Cached information may be assigned a time to live (TTL) independent of other cached information.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220524&amp;DB=EPODOC&amp;CC=US&amp;NR=11341097B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220524&amp;DB=EPODOC&amp;CC=US&amp;NR=11341097B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Dhanasekaran, Sriram</creatorcontrib><creatorcontrib>Leite Pinheiro de Paiva, Joao Celestino</creatorcontrib><creatorcontrib>Pugachev, Dmitry</creatorcontrib><title>Prefetching based on historical use and real-time signals</title><description>Methods, systems and computer program products are provided for prefetching based on historical use and real-time signals. Forecast models may be configured to forecast whether to prefetch information (e.g. keys responsive to queries) for future time intervals based on historical use and internal or external signals that may influence forecasts, such as prevailing conditions. Historical use of keys may be analyzed for patterns and trends with multiple seasonalities per category and/or per key. Time series data and forecasts may be indexed by cache categories and time intervals. Forecast models may be trainable, optimizable, configurable and/or auto-correcting on a per-category and/or a per-key basis. Forecast precision indicators, confidence indicators and configurable thresholds may be used to optimize performance. Operations may be distributed among multiple servers. Tasks may be time-distributed by offsets. Cached information may be assigned a time to live (TTL) independent of other cached information.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAMKEpNSy1JzsjMS1dISixOTVHIz1PIyCwuyS_KTE7MUSgtTlVIzEtRKEpNzNEtycxNVSjOTM9LzCnmYWBNA1KpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDQ2MTQwNLcyciYGDUALGQulg</recordid><startdate>20220524</startdate><enddate>20220524</enddate><creator>Dhanasekaran, Sriram</creator><creator>Leite Pinheiro de Paiva, Joao Celestino</creator><creator>Pugachev, Dmitry</creator><scope>EVB</scope></search><sort><creationdate>20220524</creationdate><title>Prefetching based on historical use and real-time signals</title><author>Dhanasekaran, Sriram ; Leite Pinheiro de Paiva, Joao Celestino ; Pugachev, Dmitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11341097B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Dhanasekaran, Sriram</creatorcontrib><creatorcontrib>Leite Pinheiro de Paiva, Joao Celestino</creatorcontrib><creatorcontrib>Pugachev, Dmitry</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dhanasekaran, Sriram</au><au>Leite Pinheiro de Paiva, Joao Celestino</au><au>Pugachev, Dmitry</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Prefetching based on historical use and real-time signals</title><date>2022-05-24</date><risdate>2022</risdate><abstract>Methods, systems and computer program products are provided for prefetching based on historical use and real-time signals. Forecast models may be configured to forecast whether to prefetch information (e.g. keys responsive to queries) for future time intervals based on historical use and internal or external signals that may influence forecasts, such as prevailing conditions. Historical use of keys may be analyzed for patterns and trends with multiple seasonalities per category and/or per key. Time series data and forecasts may be indexed by cache categories and time intervals. Forecast models may be trainable, optimizable, configurable and/or auto-correcting on a per-category and/or a per-key basis. Forecast precision indicators, confidence indicators and configurable thresholds may be used to optimize performance. Operations may be distributed among multiple servers. Tasks may be time-distributed by offsets. Cached information may be assigned a time to live (TTL) independent of other cached information.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11341097B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Prefetching based on historical use and real-time signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Dhanasekaran,%20Sriram&rft.date=2022-05-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11341097B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true