Face reconstruction from a learned embedding

The present disclosure provides systems and methods that perform face reconstruction based on an image of a face. In particular, one example system of the present disclosure combines a machine-learned image recognition model with a face modeler that uses a morphable model of a human's facial ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Krishnan, Dilip, Freeman, William T, Cole, Forrester H, Belanger, David Benjamin
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Krishnan, Dilip
Freeman, William T
Cole, Forrester H
Belanger, David Benjamin
description The present disclosure provides systems and methods that perform face reconstruction based on an image of a face. In particular, one example system of the present disclosure combines a machine-learned image recognition model with a face modeler that uses a morphable model of a human's facial appearance. The image recognition model can be a deep learning model that generates an embedding in response to receipt of an image (e.g., an uncontrolled image of a face). The example system can further include a small, lightweight, translation model structurally positioned between the image recognition model and the face modeler. The translation model can be a machine-learned model that is trained to receive the embedding generated by the image recognition model and, in response, output a plurality of facial modeling parameter values usable by the face modeler to generate a model of the face.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11335120B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11335120B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11335120B23</originalsourceid><addsrcrecordid>eNrjZNBxS0xOVShKTc7PKy4pKk0uyczPU0grys9VSFTISU0syktNUUjNTUpNScnMS-dhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBUCj8lJL4kODDQ2NjU0NjQycjIyJUQMAj0opxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Face reconstruction from a learned embedding</title><source>esp@cenet</source><creator>Krishnan, Dilip ; Freeman, William T ; Cole, Forrester H ; Belanger, David Benjamin</creator><creatorcontrib>Krishnan, Dilip ; Freeman, William T ; Cole, Forrester H ; Belanger, David Benjamin</creatorcontrib><description>The present disclosure provides systems and methods that perform face reconstruction based on an image of a face. In particular, one example system of the present disclosure combines a machine-learned image recognition model with a face modeler that uses a morphable model of a human's facial appearance. The image recognition model can be a deep learning model that generates an embedding in response to receipt of an image (e.g., an uncontrolled image of a face). The example system can further include a small, lightweight, translation model structurally positioned between the image recognition model and the face modeler. The translation model can be a machine-learned model that is trained to receive the embedding generated by the image recognition model and, in response, output a plurality of facial modeling parameter values usable by the face modeler to generate a model of the face.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220517&amp;DB=EPODOC&amp;CC=US&amp;NR=11335120B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220517&amp;DB=EPODOC&amp;CC=US&amp;NR=11335120B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Krishnan, Dilip</creatorcontrib><creatorcontrib>Freeman, William T</creatorcontrib><creatorcontrib>Cole, Forrester H</creatorcontrib><creatorcontrib>Belanger, David Benjamin</creatorcontrib><title>Face reconstruction from a learned embedding</title><description>The present disclosure provides systems and methods that perform face reconstruction based on an image of a face. In particular, one example system of the present disclosure combines a machine-learned image recognition model with a face modeler that uses a morphable model of a human's facial appearance. The image recognition model can be a deep learning model that generates an embedding in response to receipt of an image (e.g., an uncontrolled image of a face). The example system can further include a small, lightweight, translation model structurally positioned between the image recognition model and the face modeler. The translation model can be a machine-learned model that is trained to receive the embedding generated by the image recognition model and, in response, output a plurality of facial modeling parameter values usable by the face modeler to generate a model of the face.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNBxS0xOVShKTc7PKy4pKk0uyczPU0grys9VSFTISU0syktNUUjNTUpNScnMS-dhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBUCj8lJL4kODDQ2NjU0NjQycjIyJUQMAj0opxw</recordid><startdate>20220517</startdate><enddate>20220517</enddate><creator>Krishnan, Dilip</creator><creator>Freeman, William T</creator><creator>Cole, Forrester H</creator><creator>Belanger, David Benjamin</creator><scope>EVB</scope></search><sort><creationdate>20220517</creationdate><title>Face reconstruction from a learned embedding</title><author>Krishnan, Dilip ; Freeman, William T ; Cole, Forrester H ; Belanger, David Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11335120B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Krishnan, Dilip</creatorcontrib><creatorcontrib>Freeman, William T</creatorcontrib><creatorcontrib>Cole, Forrester H</creatorcontrib><creatorcontrib>Belanger, David Benjamin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krishnan, Dilip</au><au>Freeman, William T</au><au>Cole, Forrester H</au><au>Belanger, David Benjamin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Face reconstruction from a learned embedding</title><date>2022-05-17</date><risdate>2022</risdate><abstract>The present disclosure provides systems and methods that perform face reconstruction based on an image of a face. In particular, one example system of the present disclosure combines a machine-learned image recognition model with a face modeler that uses a morphable model of a human's facial appearance. The image recognition model can be a deep learning model that generates an embedding in response to receipt of an image (e.g., an uncontrolled image of a face). The example system can further include a small, lightweight, translation model structurally positioned between the image recognition model and the face modeler. The translation model can be a machine-learned model that is trained to receive the embedding generated by the image recognition model and, in response, output a plurality of facial modeling parameter values usable by the face modeler to generate a model of the face.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11335120B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Face reconstruction from a learned embedding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Krishnan,%20Dilip&rft.date=2022-05-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11335120B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true