Malicious threat detection through time series graph analysis

Malicious threat detection through time-series graph analysis, in which a data analysis device receives a data file comprising multiple log data entries. The log data entries include parameters associated with a computer network event in a computing network. The data analysis device produces a graph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wendt, Michael Evan, DiValentin, Louis William, Patterson, Joshua, Burkett, Robin Lynn, Kraus, Keith
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Wendt, Michael Evan
DiValentin, Louis William
Patterson, Joshua
Burkett, Robin Lynn
Kraus, Keith
description Malicious threat detection through time-series graph analysis, in which a data analysis device receives a data file comprising multiple log data entries. The log data entries include parameters associated with a computer network event in a computing network. The data analysis device produces a graphical model of the computing network based on at least one parameter included in the log data. The data analysis device also identifies a parameter associated with a node of the computer network represented by the graphical model, and performs a time-series analysis on the parameter. The data analysis device further determines, based on the time-series analysis on the parameter, at least one of an anomalous event associated with the computing network or a malicious event associated with the computing network.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11323460B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11323460B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11323460B23</originalsourceid><addsrcrecordid>eNrjZLD1TczJTM7MLy1WKMkoSk0sUUhJLUlNLsnMzwMJ5JemZyiUZOamKhSnFmWmFiukFyUWZCgk5iXmVBZnFvMwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUkvjQYENDYyNjEzMDJyNjYtQAAFs1ML4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Malicious threat detection through time series graph analysis</title><source>esp@cenet</source><creator>Wendt, Michael Evan ; DiValentin, Louis William ; Patterson, Joshua ; Burkett, Robin Lynn ; Kraus, Keith</creator><creatorcontrib>Wendt, Michael Evan ; DiValentin, Louis William ; Patterson, Joshua ; Burkett, Robin Lynn ; Kraus, Keith</creatorcontrib><description>Malicious threat detection through time-series graph analysis, in which a data analysis device receives a data file comprising multiple log data entries. The log data entries include parameters associated with a computer network event in a computing network. The data analysis device produces a graphical model of the computing network based on at least one parameter included in the log data. The data analysis device also identifies a parameter associated with a node of the computer network represented by the graphical model, and performs a time-series analysis on the parameter. The data analysis device further determines, based on the time-series analysis on the parameter, at least one of an anomalous event associated with the computing network or a malicious event associated with the computing network.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220503&amp;DB=EPODOC&amp;CC=US&amp;NR=11323460B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220503&amp;DB=EPODOC&amp;CC=US&amp;NR=11323460B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Wendt, Michael Evan</creatorcontrib><creatorcontrib>DiValentin, Louis William</creatorcontrib><creatorcontrib>Patterson, Joshua</creatorcontrib><creatorcontrib>Burkett, Robin Lynn</creatorcontrib><creatorcontrib>Kraus, Keith</creatorcontrib><title>Malicious threat detection through time series graph analysis</title><description>Malicious threat detection through time-series graph analysis, in which a data analysis device receives a data file comprising multiple log data entries. The log data entries include parameters associated with a computer network event in a computing network. The data analysis device produces a graphical model of the computing network based on at least one parameter included in the log data. The data analysis device also identifies a parameter associated with a node of the computer network represented by the graphical model, and performs a time-series analysis on the parameter. The data analysis device further determines, based on the time-series analysis on the parameter, at least one of an anomalous event associated with the computing network or a malicious event associated with the computing network.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLD1TczJTM7MLy1WKMkoSk0sUUhJLUlNLsnMzwMJ5JemZyiUZOamKhSnFmWmFiukFyUWZCgk5iXmVBZnFvMwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUkvjQYENDYyNjEzMDJyNjYtQAAFs1ML4</recordid><startdate>20220503</startdate><enddate>20220503</enddate><creator>Wendt, Michael Evan</creator><creator>DiValentin, Louis William</creator><creator>Patterson, Joshua</creator><creator>Burkett, Robin Lynn</creator><creator>Kraus, Keith</creator><scope>EVB</scope></search><sort><creationdate>20220503</creationdate><title>Malicious threat detection through time series graph analysis</title><author>Wendt, Michael Evan ; DiValentin, Louis William ; Patterson, Joshua ; Burkett, Robin Lynn ; Kraus, Keith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11323460B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Wendt, Michael Evan</creatorcontrib><creatorcontrib>DiValentin, Louis William</creatorcontrib><creatorcontrib>Patterson, Joshua</creatorcontrib><creatorcontrib>Burkett, Robin Lynn</creatorcontrib><creatorcontrib>Kraus, Keith</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wendt, Michael Evan</au><au>DiValentin, Louis William</au><au>Patterson, Joshua</au><au>Burkett, Robin Lynn</au><au>Kraus, Keith</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Malicious threat detection through time series graph analysis</title><date>2022-05-03</date><risdate>2022</risdate><abstract>Malicious threat detection through time-series graph analysis, in which a data analysis device receives a data file comprising multiple log data entries. The log data entries include parameters associated with a computer network event in a computing network. The data analysis device produces a graphical model of the computing network based on at least one parameter included in the log data. The data analysis device also identifies a parameter associated with a node of the computer network represented by the graphical model, and performs a time-series analysis on the parameter. The data analysis device further determines, based on the time-series analysis on the parameter, at least one of an anomalous event associated with the computing network or a malicious event associated with the computing network.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11323460B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Malicious threat detection through time series graph analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Wendt,%20Michael%20Evan&rft.date=2022-05-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11323460B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true