Residual context refinement network architecture for optical character recognition
Techniques for recognizing text in an image are described. An exemplary method may include receiving a request to recognize text in an image; extracting features from the image and generating a visual feature sequence from the extracted features; performing selective contextual refinement at least o...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Litman, Roee Wu, Jonathan Litman, Ron Tsiper, Shahar Anschel, Oron Manmatha, Raghavan Mazor, Shai |
description | Techniques for recognizing text in an image are described. An exemplary method may include receiving a request to recognize text in an image; extracting features from the image and generating a visual feature sequence from the extracted features; performing selective contextual refinement at least one selective contextual refinement block of a stack of selective contextual refinement blocks to generate a text prediction by: generating a contextual feature map and combining the contextual feature map with the visual feature sequence into a visual feature space, and applying a selective decoder that utilizes a two-step attention on the visual feature space to generate a text prediction, wherein the two-step attention includes performing a 1-D self-attention computation to generate attentional features and decoding the attentional features to generate the text prediction; and outputting the generated text prediction. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11308354B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11308354B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11308354B13</originalsourceid><addsrcrecordid>eNqNjMEKwjAQBXvxIOo_xA8QDFHwXFE8Vz2XsL7YYM2GzRb9fCv4AZ7mMjPTqmlQ4m3wvSFOircaQYgJTyQ1CfpieRgv1EUF6SAwgcVw1kjfpvPiSSFjRXxPUSOneTUJvi9Y_DirlsfDZX9aIXOLkj1hHLfXs7VuvXPbTW3dP84HruI5Vg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Residual context refinement network architecture for optical character recognition</title><source>esp@cenet</source><creator>Litman, Roee ; Wu, Jonathan ; Litman, Ron ; Tsiper, Shahar ; Anschel, Oron ; Manmatha, Raghavan ; Mazor, Shai</creator><creatorcontrib>Litman, Roee ; Wu, Jonathan ; Litman, Ron ; Tsiper, Shahar ; Anschel, Oron ; Manmatha, Raghavan ; Mazor, Shai</creatorcontrib><description>Techniques for recognizing text in an image are described. An exemplary method may include receiving a request to recognize text in an image; extracting features from the image and generating a visual feature sequence from the extracted features; performing selective contextual refinement at least one selective contextual refinement block of a stack of selective contextual refinement blocks to generate a text prediction by: generating a contextual feature map and combining the contextual feature map with the visual feature sequence into a visual feature space, and applying a selective decoder that utilizes a two-step attention on the visual feature space to generate a text prediction, wherein the two-step attention includes performing a 1-D self-attention computation to generate attentional features and decoding the attentional features to generate the text prediction; and outputting the generated text prediction.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220419&DB=EPODOC&CC=US&NR=11308354B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220419&DB=EPODOC&CC=US&NR=11308354B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Litman, Roee</creatorcontrib><creatorcontrib>Wu, Jonathan</creatorcontrib><creatorcontrib>Litman, Ron</creatorcontrib><creatorcontrib>Tsiper, Shahar</creatorcontrib><creatorcontrib>Anschel, Oron</creatorcontrib><creatorcontrib>Manmatha, Raghavan</creatorcontrib><creatorcontrib>Mazor, Shai</creatorcontrib><title>Residual context refinement network architecture for optical character recognition</title><description>Techniques for recognizing text in an image are described. An exemplary method may include receiving a request to recognize text in an image; extracting features from the image and generating a visual feature sequence from the extracted features; performing selective contextual refinement at least one selective contextual refinement block of a stack of selective contextual refinement blocks to generate a text prediction by: generating a contextual feature map and combining the contextual feature map with the visual feature sequence into a visual feature space, and applying a selective decoder that utilizes a two-step attention on the visual feature space to generate a text prediction, wherein the two-step attention includes performing a 1-D self-attention computation to generate attentional features and decoding the attentional features to generate the text prediction; and outputting the generated text prediction.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjMEKwjAQBXvxIOo_xA8QDFHwXFE8Vz2XsL7YYM2GzRb9fCv4AZ7mMjPTqmlQ4m3wvSFOircaQYgJTyQ1CfpieRgv1EUF6SAwgcVw1kjfpvPiSSFjRXxPUSOneTUJvi9Y_DirlsfDZX9aIXOLkj1hHLfXs7VuvXPbTW3dP84HruI5Vg</recordid><startdate>20220419</startdate><enddate>20220419</enddate><creator>Litman, Roee</creator><creator>Wu, Jonathan</creator><creator>Litman, Ron</creator><creator>Tsiper, Shahar</creator><creator>Anschel, Oron</creator><creator>Manmatha, Raghavan</creator><creator>Mazor, Shai</creator><scope>EVB</scope></search><sort><creationdate>20220419</creationdate><title>Residual context refinement network architecture for optical character recognition</title><author>Litman, Roee ; Wu, Jonathan ; Litman, Ron ; Tsiper, Shahar ; Anschel, Oron ; Manmatha, Raghavan ; Mazor, Shai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11308354B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Litman, Roee</creatorcontrib><creatorcontrib>Wu, Jonathan</creatorcontrib><creatorcontrib>Litman, Ron</creatorcontrib><creatorcontrib>Tsiper, Shahar</creatorcontrib><creatorcontrib>Anschel, Oron</creatorcontrib><creatorcontrib>Manmatha, Raghavan</creatorcontrib><creatorcontrib>Mazor, Shai</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Litman, Roee</au><au>Wu, Jonathan</au><au>Litman, Ron</au><au>Tsiper, Shahar</au><au>Anschel, Oron</au><au>Manmatha, Raghavan</au><au>Mazor, Shai</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Residual context refinement network architecture for optical character recognition</title><date>2022-04-19</date><risdate>2022</risdate><abstract>Techniques for recognizing text in an image are described. An exemplary method may include receiving a request to recognize text in an image; extracting features from the image and generating a visual feature sequence from the extracted features; performing selective contextual refinement at least one selective contextual refinement block of a stack of selective contextual refinement blocks to generate a text prediction by: generating a contextual feature map and combining the contextual feature map with the visual feature sequence into a visual feature space, and applying a selective decoder that utilizes a two-step attention on the visual feature space to generate a text prediction, wherein the two-step attention includes performing a 1-D self-attention computation to generate attentional features and decoding the attentional features to generate the text prediction; and outputting the generated text prediction.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11308354B1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Residual context refinement network architecture for optical character recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A08%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Litman,%20Roee&rft.date=2022-04-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11308354B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |