Distance to obstacle detection in autonomous machine applications

In various examples, a deep neural network (DNN) is trained to accurately predict, in deployment, distances to objects and obstacles using image data alone. The DNN may be trained with ground truth data that is generated and encoded using sensor data from any number of depth predicting sensors, such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Herrera Castro, Daniel, Oh, Sangmin, Park, Minwoo, Janis, Pekka, Yang, Yilin, Nister, David, Jujjavarapu, Bala Siva Sashank, Ye, Zhaoting, Koivisto, Tommi
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Herrera Castro, Daniel
Oh, Sangmin
Park, Minwoo
Janis, Pekka
Yang, Yilin
Nister, David
Jujjavarapu, Bala Siva Sashank
Ye, Zhaoting
Koivisto, Tommi
description In various examples, a deep neural network (DNN) is trained to accurately predict, in deployment, distances to objects and obstacles using image data alone. The DNN may be trained with ground truth data that is generated and encoded using sensor data from any number of depth predicting sensors, such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. Camera adaptation algorithms may be used in various embodiments to adapt the DNN for use with image data generated by cameras with varying parameters-such as varying fields of view. In some examples, a post-processing safety bounds operation may be executed on the predictions of the DNN to ensure that the predictions fall within a safety-permissible range.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11308338B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11308338B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11308338B23</originalsourceid><addsrcrecordid>eNqNyjEKAkEMQNFpLES9QzyA4DrNtuqu2Kv1EmPEwGwykOz9VfAAVv8Xb572nXigEkMY2P3zVBgeHEwhpiAKOIWpjTY5jEgvUQastQjhV_gyzZ5YnFe_LtL61F-P5w1XG9grEivHcLs0Td62ObeHXf7HvAE9HzJZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Distance to obstacle detection in autonomous machine applications</title><source>esp@cenet</source><creator>Herrera Castro, Daniel ; Oh, Sangmin ; Park, Minwoo ; Janis, Pekka ; Yang, Yilin ; Nister, David ; Jujjavarapu, Bala Siva Sashank ; Ye, Zhaoting ; Koivisto, Tommi</creator><creatorcontrib>Herrera Castro, Daniel ; Oh, Sangmin ; Park, Minwoo ; Janis, Pekka ; Yang, Yilin ; Nister, David ; Jujjavarapu, Bala Siva Sashank ; Ye, Zhaoting ; Koivisto, Tommi</creatorcontrib><description>In various examples, a deep neural network (DNN) is trained to accurately predict, in deployment, distances to objects and obstacles using image data alone. The DNN may be trained with ground truth data that is generated and encoded using sensor data from any number of depth predicting sensors, such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. Camera adaptation algorithms may be used in various embodiments to adapt the DNN for use with image data generated by cameras with varying parameters-such as varying fields of view. In some examples, a post-processing safety bounds operation may be executed on the predictions of the DNN to ensure that the predictions fall within a safety-permissible range.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220419&amp;DB=EPODOC&amp;CC=US&amp;NR=11308338B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220419&amp;DB=EPODOC&amp;CC=US&amp;NR=11308338B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Herrera Castro, Daniel</creatorcontrib><creatorcontrib>Oh, Sangmin</creatorcontrib><creatorcontrib>Park, Minwoo</creatorcontrib><creatorcontrib>Janis, Pekka</creatorcontrib><creatorcontrib>Yang, Yilin</creatorcontrib><creatorcontrib>Nister, David</creatorcontrib><creatorcontrib>Jujjavarapu, Bala Siva Sashank</creatorcontrib><creatorcontrib>Ye, Zhaoting</creatorcontrib><creatorcontrib>Koivisto, Tommi</creatorcontrib><title>Distance to obstacle detection in autonomous machine applications</title><description>In various examples, a deep neural network (DNN) is trained to accurately predict, in deployment, distances to objects and obstacles using image data alone. The DNN may be trained with ground truth data that is generated and encoded using sensor data from any number of depth predicting sensors, such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. Camera adaptation algorithms may be used in various embodiments to adapt the DNN for use with image data generated by cameras with varying parameters-such as varying fields of view. In some examples, a post-processing safety bounds operation may be executed on the predictions of the DNN to ensure that the predictions fall within a safety-permissible range.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKAkEMQNFpLES9QzyA4DrNtuqu2Kv1EmPEwGwykOz9VfAAVv8Xb572nXigEkMY2P3zVBgeHEwhpiAKOIWpjTY5jEgvUQastQjhV_gyzZ5YnFe_LtL61F-P5w1XG9grEivHcLs0Td62ObeHXf7HvAE9HzJZ</recordid><startdate>20220419</startdate><enddate>20220419</enddate><creator>Herrera Castro, Daniel</creator><creator>Oh, Sangmin</creator><creator>Park, Minwoo</creator><creator>Janis, Pekka</creator><creator>Yang, Yilin</creator><creator>Nister, David</creator><creator>Jujjavarapu, Bala Siva Sashank</creator><creator>Ye, Zhaoting</creator><creator>Koivisto, Tommi</creator><scope>EVB</scope></search><sort><creationdate>20220419</creationdate><title>Distance to obstacle detection in autonomous machine applications</title><author>Herrera Castro, Daniel ; Oh, Sangmin ; Park, Minwoo ; Janis, Pekka ; Yang, Yilin ; Nister, David ; Jujjavarapu, Bala Siva Sashank ; Ye, Zhaoting ; Koivisto, Tommi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11308338B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Herrera Castro, Daniel</creatorcontrib><creatorcontrib>Oh, Sangmin</creatorcontrib><creatorcontrib>Park, Minwoo</creatorcontrib><creatorcontrib>Janis, Pekka</creatorcontrib><creatorcontrib>Yang, Yilin</creatorcontrib><creatorcontrib>Nister, David</creatorcontrib><creatorcontrib>Jujjavarapu, Bala Siva Sashank</creatorcontrib><creatorcontrib>Ye, Zhaoting</creatorcontrib><creatorcontrib>Koivisto, Tommi</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Herrera Castro, Daniel</au><au>Oh, Sangmin</au><au>Park, Minwoo</au><au>Janis, Pekka</au><au>Yang, Yilin</au><au>Nister, David</au><au>Jujjavarapu, Bala Siva Sashank</au><au>Ye, Zhaoting</au><au>Koivisto, Tommi</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Distance to obstacle detection in autonomous machine applications</title><date>2022-04-19</date><risdate>2022</risdate><abstract>In various examples, a deep neural network (DNN) is trained to accurately predict, in deployment, distances to objects and obstacles using image data alone. The DNN may be trained with ground truth data that is generated and encoded using sensor data from any number of depth predicting sensors, such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. Camera adaptation algorithms may be used in various embodiments to adapt the DNN for use with image data generated by cameras with varying parameters-such as varying fields of view. In some examples, a post-processing safety bounds operation may be executed on the predictions of the DNN to ensure that the predictions fall within a safety-permissible range.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11308338B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Distance to obstacle detection in autonomous machine applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Herrera%20Castro,%20Daniel&rft.date=2022-04-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11308338B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true