Systems, methods, and computer-readable media for parallel stochastic gradient descent with linear and non-linear activation functions
Systems, methods, and computer-readable media are disclosed for parallel stochastic gradient descent using linear and non-linear activation functions. One method includes: receiving a set of input examples; receiving a global model; and learning a new global model based on the global model and the s...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Musuvathi, Madanlal S Maleki, Saeed Mytkowicz, Todd D |
description | Systems, methods, and computer-readable media are disclosed for parallel stochastic gradient descent using linear and non-linear activation functions. One method includes: receiving a set of input examples; receiving a global model; and learning a new global model based on the global model and the set of input examples by iteratively performing the following steps: computing a plurality of local models having a plurality of model parameters based on the global model and at least a portion of the set of input examples; computing, for each local model, a corresponding model combiner based on the global model and at least a portion of the set of input examples; and combining the plurality of local models into the new global model based on the current global model and the plurality of corresponding model combiners. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11295231B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11295231B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11295231B23</originalsourceid><addsrcrecordid>eNqNjLEOwjAMRLswIOAfzE6HFjGwgkDshbkyiUstpUkUuyB-gO-mRbAz3Tvd6U2zV_UUpU5W0JG2wQ6A3oIJXeyVUp4ILV4dDbNlhCYkiJjQOXIgGkyLomzgltAyeQVLYsZ8sLbg2BOmj9AHn_-qUb6jcvDQ9N6MIPNs0qATWnxzli2Ph_P-lFMMNUnEQUpaX6qiKLebcl3syvU_nzdXYkwZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Systems, methods, and computer-readable media for parallel stochastic gradient descent with linear and non-linear activation functions</title><source>esp@cenet</source><creator>Musuvathi, Madanlal S ; Maleki, Saeed ; Mytkowicz, Todd D</creator><creatorcontrib>Musuvathi, Madanlal S ; Maleki, Saeed ; Mytkowicz, Todd D</creatorcontrib><description>Systems, methods, and computer-readable media are disclosed for parallel stochastic gradient descent using linear and non-linear activation functions. One method includes: receiving a set of input examples; receiving a global model; and learning a new global model based on the global model and the set of input examples by iteratively performing the following steps: computing a plurality of local models having a plurality of model parameters based on the global model and at least a portion of the set of input examples; computing, for each local model, a corresponding model combiner based on the global model and at least a portion of the set of input examples; and combining the plurality of local models into the new global model based on the current global model and the plurality of corresponding model combiners.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220405&DB=EPODOC&CC=US&NR=11295231B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25551,76302</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220405&DB=EPODOC&CC=US&NR=11295231B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Musuvathi, Madanlal S</creatorcontrib><creatorcontrib>Maleki, Saeed</creatorcontrib><creatorcontrib>Mytkowicz, Todd D</creatorcontrib><title>Systems, methods, and computer-readable media for parallel stochastic gradient descent with linear and non-linear activation functions</title><description>Systems, methods, and computer-readable media are disclosed for parallel stochastic gradient descent using linear and non-linear activation functions. One method includes: receiving a set of input examples; receiving a global model; and learning a new global model based on the global model and the set of input examples by iteratively performing the following steps: computing a plurality of local models having a plurality of model parameters based on the global model and at least a portion of the set of input examples; computing, for each local model, a corresponding model combiner based on the global model and at least a portion of the set of input examples; and combining the plurality of local models into the new global model based on the current global model and the plurality of corresponding model combiners.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEOwjAMRLswIOAfzE6HFjGwgkDshbkyiUstpUkUuyB-gO-mRbAz3Tvd6U2zV_UUpU5W0JG2wQ6A3oIJXeyVUp4ILV4dDbNlhCYkiJjQOXIgGkyLomzgltAyeQVLYsZ8sLbg2BOmj9AHn_-qUb6jcvDQ9N6MIPNs0qATWnxzli2Ph_P-lFMMNUnEQUpaX6qiKLebcl3syvU_nzdXYkwZ</recordid><startdate>20220405</startdate><enddate>20220405</enddate><creator>Musuvathi, Madanlal S</creator><creator>Maleki, Saeed</creator><creator>Mytkowicz, Todd D</creator><scope>EVB</scope></search><sort><creationdate>20220405</creationdate><title>Systems, methods, and computer-readable media for parallel stochastic gradient descent with linear and non-linear activation functions</title><author>Musuvathi, Madanlal S ; Maleki, Saeed ; Mytkowicz, Todd D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11295231B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Musuvathi, Madanlal S</creatorcontrib><creatorcontrib>Maleki, Saeed</creatorcontrib><creatorcontrib>Mytkowicz, Todd D</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Musuvathi, Madanlal S</au><au>Maleki, Saeed</au><au>Mytkowicz, Todd D</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Systems, methods, and computer-readable media for parallel stochastic gradient descent with linear and non-linear activation functions</title><date>2022-04-05</date><risdate>2022</risdate><abstract>Systems, methods, and computer-readable media are disclosed for parallel stochastic gradient descent using linear and non-linear activation functions. One method includes: receiving a set of input examples; receiving a global model; and learning a new global model based on the global model and the set of input examples by iteratively performing the following steps: computing a plurality of local models having a plurality of model parameters based on the global model and at least a portion of the set of input examples; computing, for each local model, a corresponding model combiner based on the global model and at least a portion of the set of input examples; and combining the plurality of local models into the new global model based on the current global model and the plurality of corresponding model combiners.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11295231B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Systems, methods, and computer-readable media for parallel stochastic gradient descent with linear and non-linear activation functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Musuvathi,%20Madanlal%20S&rft.date=2022-04-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11295231B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |