Monitoring a fracture in a hydrocarbon well

Hydrocarbon wells that include interrogation devices positioned within a fracture and methods of monitoring at least one property of a fracture. The hydrocarbon wells include a wellbore that extends within a subsurface region and a fracture that extends from the wellbore. The hydrocarbon wells also...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Searles, Kevin H, Long, Ted A
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Searles, Kevin H
Long, Ted A
description Hydrocarbon wells that include interrogation devices positioned within a fracture and methods of monitoring at least one property of a fracture. The hydrocarbon wells include a wellbore that extends within a subsurface region and a fracture that extends from the wellbore. The hydrocarbon wells also include a plurality of interrogation devices entrained within a carrier fluid and positioned within the fracture and a downhole communication device positioned within the wellbore and proximal the fracture. The methods include flowing the interrogation devices into the fracture and conveying the excitation signal into the fracture. The methods also include receiving the excitation signal with the interrogation devices and generating a plurality of corresponding resultant signals with the interrogation devices. The methods further include receiving at least a subset of the corresponding resultant signals with a downhole communication device and determining at least one property of the fracture based upon the corresponding resultant signals.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11293276B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11293276B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11293276B23</originalsourceid><addsrcrecordid>eNrjZND2zc_LLMkvysxLV0hUSCtKTC4pLUpVyMwD8jIqU4rykxOLkvLzFMpTc3J4GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakl8aLChoZGlsZG5mZORMTFqAFaQKW4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Monitoring a fracture in a hydrocarbon well</title><source>esp@cenet</source><creator>Searles, Kevin H ; Long, Ted A</creator><creatorcontrib>Searles, Kevin H ; Long, Ted A</creatorcontrib><description>Hydrocarbon wells that include interrogation devices positioned within a fracture and methods of monitoring at least one property of a fracture. The hydrocarbon wells include a wellbore that extends within a subsurface region and a fracture that extends from the wellbore. The hydrocarbon wells also include a plurality of interrogation devices entrained within a carrier fluid and positioned within the fracture and a downhole communication device positioned within the wellbore and proximal the fracture. The methods include flowing the interrogation devices into the fracture and conveying the excitation signal into the fracture. The methods also include receiving the excitation signal with the interrogation devices and generating a plurality of corresponding resultant signals with the interrogation devices. The methods further include receiving at least a subset of the corresponding resultant signals with a downhole communication device and determining at least one property of the fracture based upon the corresponding resultant signals.</description><language>eng</language><subject>EARTH DRILLING ; EARTH DRILLING, e.g. DEEP DRILLING ; FIXED CONSTRUCTIONS ; MINING ; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220405&amp;DB=EPODOC&amp;CC=US&amp;NR=11293276B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220405&amp;DB=EPODOC&amp;CC=US&amp;NR=11293276B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Searles, Kevin H</creatorcontrib><creatorcontrib>Long, Ted A</creatorcontrib><title>Monitoring a fracture in a hydrocarbon well</title><description>Hydrocarbon wells that include interrogation devices positioned within a fracture and methods of monitoring at least one property of a fracture. The hydrocarbon wells include a wellbore that extends within a subsurface region and a fracture that extends from the wellbore. The hydrocarbon wells also include a plurality of interrogation devices entrained within a carrier fluid and positioned within the fracture and a downhole communication device positioned within the wellbore and proximal the fracture. The methods include flowing the interrogation devices into the fracture and conveying the excitation signal into the fracture. The methods also include receiving the excitation signal with the interrogation devices and generating a plurality of corresponding resultant signals with the interrogation devices. The methods further include receiving at least a subset of the corresponding resultant signals with a downhole communication device and determining at least one property of the fracture based upon the corresponding resultant signals.</description><subject>EARTH DRILLING</subject><subject>EARTH DRILLING, e.g. DEEP DRILLING</subject><subject>FIXED CONSTRUCTIONS</subject><subject>MINING</subject><subject>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZND2zc_LLMkvysxLV0hUSCtKTC4pLUpVyMwD8jIqU4rykxOLkvLzFMpTc3J4GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakl8aLChoZGlsZG5mZORMTFqAFaQKW4</recordid><startdate>20220405</startdate><enddate>20220405</enddate><creator>Searles, Kevin H</creator><creator>Long, Ted A</creator><scope>EVB</scope></search><sort><creationdate>20220405</creationdate><title>Monitoring a fracture in a hydrocarbon well</title><author>Searles, Kevin H ; Long, Ted A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11293276B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>EARTH DRILLING</topic><topic>EARTH DRILLING, e.g. DEEP DRILLING</topic><topic>FIXED CONSTRUCTIONS</topic><topic>MINING</topic><topic>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</topic><toplevel>online_resources</toplevel><creatorcontrib>Searles, Kevin H</creatorcontrib><creatorcontrib>Long, Ted A</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Searles, Kevin H</au><au>Long, Ted A</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Monitoring a fracture in a hydrocarbon well</title><date>2022-04-05</date><risdate>2022</risdate><abstract>Hydrocarbon wells that include interrogation devices positioned within a fracture and methods of monitoring at least one property of a fracture. The hydrocarbon wells include a wellbore that extends within a subsurface region and a fracture that extends from the wellbore. The hydrocarbon wells also include a plurality of interrogation devices entrained within a carrier fluid and positioned within the fracture and a downhole communication device positioned within the wellbore and proximal the fracture. The methods include flowing the interrogation devices into the fracture and conveying the excitation signal into the fracture. The methods also include receiving the excitation signal with the interrogation devices and generating a plurality of corresponding resultant signals with the interrogation devices. The methods further include receiving at least a subset of the corresponding resultant signals with a downhole communication device and determining at least one property of the fracture based upon the corresponding resultant signals.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11293276B2
source esp@cenet
subjects EARTH DRILLING
EARTH DRILLING, e.g. DEEP DRILLING
FIXED CONSTRUCTIONS
MINING
OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS
title Monitoring a fracture in a hydrocarbon well
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Searles,%20Kevin%20H&rft.date=2022-04-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11293276B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true