Monitoring a fracture in a hydrocarbon well
Hydrocarbon wells that include interrogation devices positioned within a fracture and methods of monitoring at least one property of a fracture. The hydrocarbon wells include a wellbore that extends within a subsurface region and a fracture that extends from the wellbore. The hydrocarbon wells also...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Searles, Kevin H Long, Ted A |
description | Hydrocarbon wells that include interrogation devices positioned within a fracture and methods of monitoring at least one property of a fracture. The hydrocarbon wells include a wellbore that extends within a subsurface region and a fracture that extends from the wellbore. The hydrocarbon wells also include a plurality of interrogation devices entrained within a carrier fluid and positioned within the fracture and a downhole communication device positioned within the wellbore and proximal the fracture. The methods include flowing the interrogation devices into the fracture and conveying the excitation signal into the fracture. The methods also include receiving the excitation signal with the interrogation devices and generating a plurality of corresponding resultant signals with the interrogation devices. The methods further include receiving at least a subset of the corresponding resultant signals with a downhole communication device and determining at least one property of the fracture based upon the corresponding resultant signals. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11293276B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11293276B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11293276B23</originalsourceid><addsrcrecordid>eNrjZND2zc_LLMkvysxLV0hUSCtKTC4pLUpVyMwD8jIqU4rykxOLkvLzFMpTc3J4GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakl8aLChoZGlsZG5mZORMTFqAFaQKW4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Monitoring a fracture in a hydrocarbon well</title><source>esp@cenet</source><creator>Searles, Kevin H ; Long, Ted A</creator><creatorcontrib>Searles, Kevin H ; Long, Ted A</creatorcontrib><description>Hydrocarbon wells that include interrogation devices positioned within a fracture and methods of monitoring at least one property of a fracture. The hydrocarbon wells include a wellbore that extends within a subsurface region and a fracture that extends from the wellbore. The hydrocarbon wells also include a plurality of interrogation devices entrained within a carrier fluid and positioned within the fracture and a downhole communication device positioned within the wellbore and proximal the fracture. The methods include flowing the interrogation devices into the fracture and conveying the excitation signal into the fracture. The methods also include receiving the excitation signal with the interrogation devices and generating a plurality of corresponding resultant signals with the interrogation devices. The methods further include receiving at least a subset of the corresponding resultant signals with a downhole communication device and determining at least one property of the fracture based upon the corresponding resultant signals.</description><language>eng</language><subject>EARTH DRILLING ; EARTH DRILLING, e.g. DEEP DRILLING ; FIXED CONSTRUCTIONS ; MINING ; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220405&DB=EPODOC&CC=US&NR=11293276B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220405&DB=EPODOC&CC=US&NR=11293276B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Searles, Kevin H</creatorcontrib><creatorcontrib>Long, Ted A</creatorcontrib><title>Monitoring a fracture in a hydrocarbon well</title><description>Hydrocarbon wells that include interrogation devices positioned within a fracture and methods of monitoring at least one property of a fracture. The hydrocarbon wells include a wellbore that extends within a subsurface region and a fracture that extends from the wellbore. The hydrocarbon wells also include a plurality of interrogation devices entrained within a carrier fluid and positioned within the fracture and a downhole communication device positioned within the wellbore and proximal the fracture. The methods include flowing the interrogation devices into the fracture and conveying the excitation signal into the fracture. The methods also include receiving the excitation signal with the interrogation devices and generating a plurality of corresponding resultant signals with the interrogation devices. The methods further include receiving at least a subset of the corresponding resultant signals with a downhole communication device and determining at least one property of the fracture based upon the corresponding resultant signals.</description><subject>EARTH DRILLING</subject><subject>EARTH DRILLING, e.g. DEEP DRILLING</subject><subject>FIXED CONSTRUCTIONS</subject><subject>MINING</subject><subject>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZND2zc_LLMkvysxLV0hUSCtKTC4pLUpVyMwD8jIqU4rykxOLkvLzFMpTc3J4GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakl8aLChoZGlsZG5mZORMTFqAFaQKW4</recordid><startdate>20220405</startdate><enddate>20220405</enddate><creator>Searles, Kevin H</creator><creator>Long, Ted A</creator><scope>EVB</scope></search><sort><creationdate>20220405</creationdate><title>Monitoring a fracture in a hydrocarbon well</title><author>Searles, Kevin H ; Long, Ted A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11293276B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>EARTH DRILLING</topic><topic>EARTH DRILLING, e.g. DEEP DRILLING</topic><topic>FIXED CONSTRUCTIONS</topic><topic>MINING</topic><topic>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</topic><toplevel>online_resources</toplevel><creatorcontrib>Searles, Kevin H</creatorcontrib><creatorcontrib>Long, Ted A</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Searles, Kevin H</au><au>Long, Ted A</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Monitoring a fracture in a hydrocarbon well</title><date>2022-04-05</date><risdate>2022</risdate><abstract>Hydrocarbon wells that include interrogation devices positioned within a fracture and methods of monitoring at least one property of a fracture. The hydrocarbon wells include a wellbore that extends within a subsurface region and a fracture that extends from the wellbore. The hydrocarbon wells also include a plurality of interrogation devices entrained within a carrier fluid and positioned within the fracture and a downhole communication device positioned within the wellbore and proximal the fracture. The methods include flowing the interrogation devices into the fracture and conveying the excitation signal into the fracture. The methods also include receiving the excitation signal with the interrogation devices and generating a plurality of corresponding resultant signals with the interrogation devices. The methods further include receiving at least a subset of the corresponding resultant signals with a downhole communication device and determining at least one property of the fracture based upon the corresponding resultant signals.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11293276B2 |
source | esp@cenet |
subjects | EARTH DRILLING EARTH DRILLING, e.g. DEEP DRILLING FIXED CONSTRUCTIONS MINING OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS |
title | Monitoring a fracture in a hydrocarbon well |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Searles,%20Kevin%20H&rft.date=2022-04-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11293276B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |