System and method for fine-tuning sales clusters for stores

Based upon the transition information for all the retail stores, a determination is made of an average cluster retention score. The average cluster retention score is a measure of how many retail stores have moved from original to different existing sales clusters in the current sales period. When t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Karmakar, Somedip, Pal, Gayatri, Manna, Sourit
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Karmakar, Somedip
Pal, Gayatri
Manna, Sourit
description Based upon the transition information for all the retail stores, a determination is made of an average cluster retention score. The average cluster retention score is a measure of how many retail stores have moved from original to different existing sales clusters in the current sales period. When the average cluster retention score is below a predetermined threshold, a complete re-organization of the existing sales clusters is performed. When the average cluster retention score is above the predetermined threshold, a determination is made as to whether each retail store should be re-classified.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11276033B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11276033B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11276033B23</originalsourceid><addsrcrecordid>eNrjZLAOriwuSc1VSMxLUchNLcnIT1FIyy9SSMvMS9UtKc3LzEtXKE7MSS1WSM4pBSosKgZLF5fkF6UW8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0MjczMDY2MnI2Ni1AAAs-ovnA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System and method for fine-tuning sales clusters for stores</title><source>esp@cenet</source><creator>Karmakar, Somedip ; Pal, Gayatri ; Manna, Sourit</creator><creatorcontrib>Karmakar, Somedip ; Pal, Gayatri ; Manna, Sourit</creatorcontrib><description>Based upon the transition information for all the retail stores, a determination is made of an average cluster retention score. The average cluster retention score is a measure of how many retail stores have moved from original to different existing sales clusters in the current sales period. When the average cluster retention score is below a predetermined threshold, a complete re-organization of the existing sales clusters is performed. When the average cluster retention score is above the predetermined threshold, a determination is made as to whether each retail store should be re-classified.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220315&amp;DB=EPODOC&amp;CC=US&amp;NR=11276033B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220315&amp;DB=EPODOC&amp;CC=US&amp;NR=11276033B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Karmakar, Somedip</creatorcontrib><creatorcontrib>Pal, Gayatri</creatorcontrib><creatorcontrib>Manna, Sourit</creatorcontrib><title>System and method for fine-tuning sales clusters for stores</title><description>Based upon the transition information for all the retail stores, a determination is made of an average cluster retention score. The average cluster retention score is a measure of how many retail stores have moved from original to different existing sales clusters in the current sales period. When the average cluster retention score is below a predetermined threshold, a complete re-organization of the existing sales clusters is performed. When the average cluster retention score is above the predetermined threshold, a determination is made as to whether each retail store should be re-classified.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAOriwuSc1VSMxLUchNLcnIT1FIyy9SSMvMS9UtKc3LzEtXKE7MSS1WSM4pBSosKgZLF5fkF6UW8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0MjczMDY2MnI2Ni1AAAs-ovnA</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Karmakar, Somedip</creator><creator>Pal, Gayatri</creator><creator>Manna, Sourit</creator><scope>EVB</scope></search><sort><creationdate>20220315</creationdate><title>System and method for fine-tuning sales clusters for stores</title><author>Karmakar, Somedip ; Pal, Gayatri ; Manna, Sourit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11276033B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Karmakar, Somedip</creatorcontrib><creatorcontrib>Pal, Gayatri</creatorcontrib><creatorcontrib>Manna, Sourit</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karmakar, Somedip</au><au>Pal, Gayatri</au><au>Manna, Sourit</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System and method for fine-tuning sales clusters for stores</title><date>2022-03-15</date><risdate>2022</risdate><abstract>Based upon the transition information for all the retail stores, a determination is made of an average cluster retention score. The average cluster retention score is a measure of how many retail stores have moved from original to different existing sales clusters in the current sales period. When the average cluster retention score is below a predetermined threshold, a complete re-organization of the existing sales clusters is performed. When the average cluster retention score is above the predetermined threshold, a determination is made as to whether each retail store should be re-classified.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11276033B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title System and method for fine-tuning sales clusters for stores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Karmakar,%20Somedip&rft.date=2022-03-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11276033B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true