System and method for fine-tuning sales clusters for stores
Based upon the transition information for all the retail stores, a determination is made of an average cluster retention score. The average cluster retention score is a measure of how many retail stores have moved from original to different existing sales clusters in the current sales period. When t...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Karmakar, Somedip Pal, Gayatri Manna, Sourit |
description | Based upon the transition information for all the retail stores, a determination is made of an average cluster retention score. The average cluster retention score is a measure of how many retail stores have moved from original to different existing sales clusters in the current sales period. When the average cluster retention score is below a predetermined threshold, a complete re-organization of the existing sales clusters is performed. When the average cluster retention score is above the predetermined threshold, a determination is made as to whether each retail store should be re-classified. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11276033B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11276033B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11276033B23</originalsourceid><addsrcrecordid>eNrjZLAOriwuSc1VSMxLUchNLcnIT1FIyy9SSMvMS9UtKc3LzEtXKE7MSS1WSM4pBSosKgZLF5fkF6UW8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0MjczMDY2MnI2Ni1AAAs-ovnA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System and method for fine-tuning sales clusters for stores</title><source>esp@cenet</source><creator>Karmakar, Somedip ; Pal, Gayatri ; Manna, Sourit</creator><creatorcontrib>Karmakar, Somedip ; Pal, Gayatri ; Manna, Sourit</creatorcontrib><description>Based upon the transition information for all the retail stores, a determination is made of an average cluster retention score. The average cluster retention score is a measure of how many retail stores have moved from original to different existing sales clusters in the current sales period. When the average cluster retention score is below a predetermined threshold, a complete re-organization of the existing sales clusters is performed. When the average cluster retention score is above the predetermined threshold, a determination is made as to whether each retail store should be re-classified.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220315&DB=EPODOC&CC=US&NR=11276033B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220315&DB=EPODOC&CC=US&NR=11276033B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Karmakar, Somedip</creatorcontrib><creatorcontrib>Pal, Gayatri</creatorcontrib><creatorcontrib>Manna, Sourit</creatorcontrib><title>System and method for fine-tuning sales clusters for stores</title><description>Based upon the transition information for all the retail stores, a determination is made of an average cluster retention score. The average cluster retention score is a measure of how many retail stores have moved from original to different existing sales clusters in the current sales period. When the average cluster retention score is below a predetermined threshold, a complete re-organization of the existing sales clusters is performed. When the average cluster retention score is above the predetermined threshold, a determination is made as to whether each retail store should be re-classified.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAOriwuSc1VSMxLUchNLcnIT1FIyy9SSMvMS9UtKc3LzEtXKE7MSS1WSM4pBSosKgZLF5fkF6UW8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0MjczMDY2MnI2Ni1AAAs-ovnA</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Karmakar, Somedip</creator><creator>Pal, Gayatri</creator><creator>Manna, Sourit</creator><scope>EVB</scope></search><sort><creationdate>20220315</creationdate><title>System and method for fine-tuning sales clusters for stores</title><author>Karmakar, Somedip ; Pal, Gayatri ; Manna, Sourit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11276033B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Karmakar, Somedip</creatorcontrib><creatorcontrib>Pal, Gayatri</creatorcontrib><creatorcontrib>Manna, Sourit</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karmakar, Somedip</au><au>Pal, Gayatri</au><au>Manna, Sourit</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System and method for fine-tuning sales clusters for stores</title><date>2022-03-15</date><risdate>2022</risdate><abstract>Based upon the transition information for all the retail stores, a determination is made of an average cluster retention score. The average cluster retention score is a measure of how many retail stores have moved from original to different existing sales clusters in the current sales period. When the average cluster retention score is below a predetermined threshold, a complete re-organization of the existing sales clusters is performed. When the average cluster retention score is above the predetermined threshold, a determination is made as to whether each retail store should be re-classified.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11276033B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | System and method for fine-tuning sales clusters for stores |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Karmakar,%20Somedip&rft.date=2022-03-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11276033B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |