Training a neural network to predict superpixels using segmentation-aware affinity loss
Segmentation is the identification of separate objects within an image. An example is identification of a pedestrian passing in front of a car, where the pedestrian is a first object and the car is a second object. Superpixel segmentation is the identification of regions of pixels within an object t...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Liu, Ming-Yu Jampani, Varun Yang, Ming-Hsuan Sun, Deqing Tu, Wei-Chih Kautz, Jan |
description | Segmentation is the identification of separate objects within an image. An example is identification of a pedestrian passing in front of a car, where the pedestrian is a first object and the car is a second object. Superpixel segmentation is the identification of regions of pixels within an object that have similar properties. An example is identification of pixel regions having a similar color, such as different articles of clothing worn by the pedestrian and different components of the car. A pixel affinity neural network (PAN) model is trained to generate pixel affinity maps for superpixel segmentation. The pixel affinity map defines the similarity of two points in space. In an embodiment, the pixel affinity map indicates a horizontal affinity and vertical affinity for each pixel in the image. The pixel affinity map is processed to identify the superpixels. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11256961B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11256961B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11256961B23</originalsourceid><addsrcrecordid>eNqNjUEKwjAQAHPxIOof1gf0kIoFr4ri3YrHstRtCcYk7G6o_t4IPsDTXIaZubm1jC64MAJCoMzoC3SK_ACNkJjurleQnIiTe5EXyPK1hcYnBUV1MVQ4IRPgMJSSvsFHkaWZDeiFVj8uzPp0bA_nilLsSBL2VD7d9WJtvW12jd3Xm3-cD8obOvw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Training a neural network to predict superpixels using segmentation-aware affinity loss</title><source>esp@cenet</source><creator>Liu, Ming-Yu ; Jampani, Varun ; Yang, Ming-Hsuan ; Sun, Deqing ; Tu, Wei-Chih ; Kautz, Jan</creator><creatorcontrib>Liu, Ming-Yu ; Jampani, Varun ; Yang, Ming-Hsuan ; Sun, Deqing ; Tu, Wei-Chih ; Kautz, Jan</creatorcontrib><description>Segmentation is the identification of separate objects within an image. An example is identification of a pedestrian passing in front of a car, where the pedestrian is a first object and the car is a second object. Superpixel segmentation is the identification of regions of pixels within an object that have similar properties. An example is identification of pixel regions having a similar color, such as different articles of clothing worn by the pedestrian and different components of the car. A pixel affinity neural network (PAN) model is trained to generate pixel affinity maps for superpixel segmentation. The pixel affinity map defines the similarity of two points in space. In an embodiment, the pixel affinity map indicates a horizontal affinity and vertical affinity for each pixel in the image. The pixel affinity map is processed to identify the superpixels.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220222&DB=EPODOC&CC=US&NR=11256961B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220222&DB=EPODOC&CC=US&NR=11256961B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Liu, Ming-Yu</creatorcontrib><creatorcontrib>Jampani, Varun</creatorcontrib><creatorcontrib>Yang, Ming-Hsuan</creatorcontrib><creatorcontrib>Sun, Deqing</creatorcontrib><creatorcontrib>Tu, Wei-Chih</creatorcontrib><creatorcontrib>Kautz, Jan</creatorcontrib><title>Training a neural network to predict superpixels using segmentation-aware affinity loss</title><description>Segmentation is the identification of separate objects within an image. An example is identification of a pedestrian passing in front of a car, where the pedestrian is a first object and the car is a second object. Superpixel segmentation is the identification of regions of pixels within an object that have similar properties. An example is identification of pixel regions having a similar color, such as different articles of clothing worn by the pedestrian and different components of the car. A pixel affinity neural network (PAN) model is trained to generate pixel affinity maps for superpixel segmentation. The pixel affinity map defines the similarity of two points in space. In an embodiment, the pixel affinity map indicates a horizontal affinity and vertical affinity for each pixel in the image. The pixel affinity map is processed to identify the superpixels.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUEKwjAQAHPxIOof1gf0kIoFr4ri3YrHstRtCcYk7G6o_t4IPsDTXIaZubm1jC64MAJCoMzoC3SK_ACNkJjurleQnIiTe5EXyPK1hcYnBUV1MVQ4IRPgMJSSvsFHkaWZDeiFVj8uzPp0bA_nilLsSBL2VD7d9WJtvW12jd3Xm3-cD8obOvw</recordid><startdate>20220222</startdate><enddate>20220222</enddate><creator>Liu, Ming-Yu</creator><creator>Jampani, Varun</creator><creator>Yang, Ming-Hsuan</creator><creator>Sun, Deqing</creator><creator>Tu, Wei-Chih</creator><creator>Kautz, Jan</creator><scope>EVB</scope></search><sort><creationdate>20220222</creationdate><title>Training a neural network to predict superpixels using segmentation-aware affinity loss</title><author>Liu, Ming-Yu ; Jampani, Varun ; Yang, Ming-Hsuan ; Sun, Deqing ; Tu, Wei-Chih ; Kautz, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11256961B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ming-Yu</creatorcontrib><creatorcontrib>Jampani, Varun</creatorcontrib><creatorcontrib>Yang, Ming-Hsuan</creatorcontrib><creatorcontrib>Sun, Deqing</creatorcontrib><creatorcontrib>Tu, Wei-Chih</creatorcontrib><creatorcontrib>Kautz, Jan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Ming-Yu</au><au>Jampani, Varun</au><au>Yang, Ming-Hsuan</au><au>Sun, Deqing</au><au>Tu, Wei-Chih</au><au>Kautz, Jan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Training a neural network to predict superpixels using segmentation-aware affinity loss</title><date>2022-02-22</date><risdate>2022</risdate><abstract>Segmentation is the identification of separate objects within an image. An example is identification of a pedestrian passing in front of a car, where the pedestrian is a first object and the car is a second object. Superpixel segmentation is the identification of regions of pixels within an object that have similar properties. An example is identification of pixel regions having a similar color, such as different articles of clothing worn by the pedestrian and different components of the car. A pixel affinity neural network (PAN) model is trained to generate pixel affinity maps for superpixel segmentation. The pixel affinity map defines the similarity of two points in space. In an embodiment, the pixel affinity map indicates a horizontal affinity and vertical affinity for each pixel in the image. The pixel affinity map is processed to identify the superpixels.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11256961B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Training a neural network to predict superpixels using segmentation-aware affinity loss |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Liu,%20Ming-Yu&rft.date=2022-02-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11256961B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |