Natural language processing models for conversational computing
In non-limiting examples of the present disclosure, systems, methods and devices for training conversational language models are presented. An embedding library may be generated and maintained. Exemplary target inputs and associated intent types may be received. The target inputs may be encoded into...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Suwandy, Tien Widya Taniguchi, David Shigeru Yang, Hung-chih Marcjan, Cezary Antoni |
description | In non-limiting examples of the present disclosure, systems, methods and devices for training conversational language models are presented. An embedding library may be generated and maintained. Exemplary target inputs and associated intent types may be received. The target inputs may be encoded into contextual embeddings. The embeddings may be added to the embedding library. When a conversational entity receives a new natural language input, that new input may be encoded into a contextual embedding. The new embedding may be added to the embedding library. A similarity score model may be applied to the new embedding and one or more embeddings for the exemplary target inputs. Similarity scores may be calculated based on the application of the similarity score model. A response may be generated by the conversational entity for an intent type for which a similarity score exceeds a threshold value. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11250839B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11250839B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11250839B23</originalsourceid><addsrcrecordid>eNrjZLD3SywpLUrMUchJzEsvTUxPVSgoyk9OLS7OzEtXyM1PSc0pVkjLL1JIzs8rSy0qTizJzM8Dqk7Ozy0oLQGq4WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoZGpgYWxpZORsbEqAEA9oEx9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Natural language processing models for conversational computing</title><source>esp@cenet</source><creator>Suwandy, Tien Widya ; Taniguchi, David Shigeru ; Yang, Hung-chih ; Marcjan, Cezary Antoni</creator><creatorcontrib>Suwandy, Tien Widya ; Taniguchi, David Shigeru ; Yang, Hung-chih ; Marcjan, Cezary Antoni</creatorcontrib><description>In non-limiting examples of the present disclosure, systems, methods and devices for training conversational language models are presented. An embedding library may be generated and maintained. Exemplary target inputs and associated intent types may be received. The target inputs may be encoded into contextual embeddings. The embeddings may be added to the embedding library. When a conversational entity receives a new natural language input, that new input may be encoded into a contextual embedding. The new embedding may be added to the embedding library. A similarity score model may be applied to the new embedding and one or more embeddings for the exemplary target inputs. Similarity scores may be calculated based on the application of the similarity score model. A response may be generated by the conversational entity for an intent type for which a similarity score exceeds a threshold value.</description><language>eng</language><subject>ACOUSTICS ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220215&DB=EPODOC&CC=US&NR=11250839B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220215&DB=EPODOC&CC=US&NR=11250839B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Suwandy, Tien Widya</creatorcontrib><creatorcontrib>Taniguchi, David Shigeru</creatorcontrib><creatorcontrib>Yang, Hung-chih</creatorcontrib><creatorcontrib>Marcjan, Cezary Antoni</creatorcontrib><title>Natural language processing models for conversational computing</title><description>In non-limiting examples of the present disclosure, systems, methods and devices for training conversational language models are presented. An embedding library may be generated and maintained. Exemplary target inputs and associated intent types may be received. The target inputs may be encoded into contextual embeddings. The embeddings may be added to the embedding library. When a conversational entity receives a new natural language input, that new input may be encoded into a contextual embedding. The new embedding may be added to the embedding library. A similarity score model may be applied to the new embedding and one or more embeddings for the exemplary target inputs. Similarity scores may be calculated based on the application of the similarity score model. A response may be generated by the conversational entity for an intent type for which a similarity score exceeds a threshold value.</description><subject>ACOUSTICS</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLD3SywpLUrMUchJzEsvTUxPVSgoyk9OLS7OzEtXyM1PSc0pVkjLL1JIzs8rSy0qTizJzM8Dqk7Ozy0oLQGq4WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoZGpgYWxpZORsbEqAEA9oEx9Q</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Suwandy, Tien Widya</creator><creator>Taniguchi, David Shigeru</creator><creator>Yang, Hung-chih</creator><creator>Marcjan, Cezary Antoni</creator><scope>EVB</scope></search><sort><creationdate>20220215</creationdate><title>Natural language processing models for conversational computing</title><author>Suwandy, Tien Widya ; Taniguchi, David Shigeru ; Yang, Hung-chih ; Marcjan, Cezary Antoni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11250839B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ACOUSTICS</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>Suwandy, Tien Widya</creatorcontrib><creatorcontrib>Taniguchi, David Shigeru</creatorcontrib><creatorcontrib>Yang, Hung-chih</creatorcontrib><creatorcontrib>Marcjan, Cezary Antoni</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Suwandy, Tien Widya</au><au>Taniguchi, David Shigeru</au><au>Yang, Hung-chih</au><au>Marcjan, Cezary Antoni</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Natural language processing models for conversational computing</title><date>2022-02-15</date><risdate>2022</risdate><abstract>In non-limiting examples of the present disclosure, systems, methods and devices for training conversational language models are presented. An embedding library may be generated and maintained. Exemplary target inputs and associated intent types may be received. The target inputs may be encoded into contextual embeddings. The embeddings may be added to the embedding library. When a conversational entity receives a new natural language input, that new input may be encoded into a contextual embedding. The new embedding may be added to the embedding library. A similarity score model may be applied to the new embedding and one or more embeddings for the exemplary target inputs. Similarity scores may be calculated based on the application of the similarity score model. A response may be generated by the conversational entity for an intent type for which a similarity score exceeds a threshold value.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11250839B2 |
source | esp@cenet |
subjects | ACOUSTICS MUSICAL INSTRUMENTS PHYSICS SPEECH ANALYSIS OR SYNTHESIS SPEECH OR AUDIO CODING OR DECODING SPEECH OR VOICE PROCESSING SPEECH RECOGNITION |
title | Natural language processing models for conversational computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Suwandy,%20Tien%20Widya&rft.date=2022-02-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11250839B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |