Personalization enhanced recommendation models

Methods, systems, apparatuses, and computer program products are provided for a two-phase technique for generating content recommendations. In a first phase, a baseline recommender is configured to generate a baseline content recommendation using one or more content recommendation models, such as a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Azzam, Saliha, Yang, Kiyoung, Su, Shih-Chieh, Nanduri, Jayaram N. M, Cai, Yaxiong, Qi, Xiaoguang
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Azzam, Saliha
Yang, Kiyoung
Su, Shih-Chieh
Nanduri, Jayaram N. M
Cai, Yaxiong
Qi, Xiaoguang
description Methods, systems, apparatuses, and computer program products are provided for a two-phase technique for generating content recommendations. In a first phase, a baseline recommender is configured to generate a baseline content recommendation using one or more content recommendation models, such as a Smart Adaptive Recommendations (SAR) model, Factorization Machine (FM) or Matrix Factorization (MF) models, collaborative filtering models, and/or any other machine-learning models or techniques. In a second phase, a personalized recommender implements a vector combiner configured to combine profile vectors, content vectors, and the baseline content recommendations to generate combined user vectors. A model generator may train a machine-learning model using the combined user vectors and training data comprising actual interaction behavior of the users, which may be then applied to identify a content recommendation for a particular user.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11250347B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11250347B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11250347B23</originalsourceid><addsrcrecordid>eNrjZNALSC0qzs9LzMmsSizJzM9TSM3LSMxLTk1RKEpNzs_NTc1LgYjn5qek5hTzMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JL40GBDQyNTA2MTcycjY2LUAABTdito</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Personalization enhanced recommendation models</title><source>esp@cenet</source><creator>Azzam, Saliha ; Yang, Kiyoung ; Su, Shih-Chieh ; Nanduri, Jayaram N. M ; Cai, Yaxiong ; Qi, Xiaoguang</creator><creatorcontrib>Azzam, Saliha ; Yang, Kiyoung ; Su, Shih-Chieh ; Nanduri, Jayaram N. M ; Cai, Yaxiong ; Qi, Xiaoguang</creatorcontrib><description>Methods, systems, apparatuses, and computer program products are provided for a two-phase technique for generating content recommendations. In a first phase, a baseline recommender is configured to generate a baseline content recommendation using one or more content recommendation models, such as a Smart Adaptive Recommendations (SAR) model, Factorization Machine (FM) or Matrix Factorization (MF) models, collaborative filtering models, and/or any other machine-learning models or techniques. In a second phase, a personalized recommender implements a vector combiner configured to combine profile vectors, content vectors, and the baseline content recommendations to generate combined user vectors. A model generator may train a machine-learning model using the combined user vectors and training data comprising actual interaction behavior of the users, which may be then applied to identify a content recommendation for a particular user.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220215&amp;DB=EPODOC&amp;CC=US&amp;NR=11250347B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220215&amp;DB=EPODOC&amp;CC=US&amp;NR=11250347B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Azzam, Saliha</creatorcontrib><creatorcontrib>Yang, Kiyoung</creatorcontrib><creatorcontrib>Su, Shih-Chieh</creatorcontrib><creatorcontrib>Nanduri, Jayaram N. M</creatorcontrib><creatorcontrib>Cai, Yaxiong</creatorcontrib><creatorcontrib>Qi, Xiaoguang</creatorcontrib><title>Personalization enhanced recommendation models</title><description>Methods, systems, apparatuses, and computer program products are provided for a two-phase technique for generating content recommendations. In a first phase, a baseline recommender is configured to generate a baseline content recommendation using one or more content recommendation models, such as a Smart Adaptive Recommendations (SAR) model, Factorization Machine (FM) or Matrix Factorization (MF) models, collaborative filtering models, and/or any other machine-learning models or techniques. In a second phase, a personalized recommender implements a vector combiner configured to combine profile vectors, content vectors, and the baseline content recommendations to generate combined user vectors. A model generator may train a machine-learning model using the combined user vectors and training data comprising actual interaction behavior of the users, which may be then applied to identify a content recommendation for a particular user.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNALSC0qzs9LzMmsSizJzM9TSM3LSMxLTk1RKEpNzs_NTc1LgYjn5qek5hTzMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JL40GBDQyNTA2MTcycjY2LUAABTdito</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Azzam, Saliha</creator><creator>Yang, Kiyoung</creator><creator>Su, Shih-Chieh</creator><creator>Nanduri, Jayaram N. M</creator><creator>Cai, Yaxiong</creator><creator>Qi, Xiaoguang</creator><scope>EVB</scope></search><sort><creationdate>20220215</creationdate><title>Personalization enhanced recommendation models</title><author>Azzam, Saliha ; Yang, Kiyoung ; Su, Shih-Chieh ; Nanduri, Jayaram N. M ; Cai, Yaxiong ; Qi, Xiaoguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11250347B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Azzam, Saliha</creatorcontrib><creatorcontrib>Yang, Kiyoung</creatorcontrib><creatorcontrib>Su, Shih-Chieh</creatorcontrib><creatorcontrib>Nanduri, Jayaram N. M</creatorcontrib><creatorcontrib>Cai, Yaxiong</creatorcontrib><creatorcontrib>Qi, Xiaoguang</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Azzam, Saliha</au><au>Yang, Kiyoung</au><au>Su, Shih-Chieh</au><au>Nanduri, Jayaram N. M</au><au>Cai, Yaxiong</au><au>Qi, Xiaoguang</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Personalization enhanced recommendation models</title><date>2022-02-15</date><risdate>2022</risdate><abstract>Methods, systems, apparatuses, and computer program products are provided for a two-phase technique for generating content recommendations. In a first phase, a baseline recommender is configured to generate a baseline content recommendation using one or more content recommendation models, such as a Smart Adaptive Recommendations (SAR) model, Factorization Machine (FM) or Matrix Factorization (MF) models, collaborative filtering models, and/or any other machine-learning models or techniques. In a second phase, a personalized recommender implements a vector combiner configured to combine profile vectors, content vectors, and the baseline content recommendations to generate combined user vectors. A model generator may train a machine-learning model using the combined user vectors and training data comprising actual interaction behavior of the users, which may be then applied to identify a content recommendation for a particular user.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11250347B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Personalization enhanced recommendation models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A18%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Azzam,%20Saliha&rft.date=2022-02-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11250347B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true