Action classification using deep embedded clustering

Described is a system for action recognition through application of deep embedded clustering. For each image frame of an input video, the system computes skeletal joint-based pose features representing an action of a human in the image frame. Non-linear mapping of the pose features into an embedded...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rahimi, Amir M, Hoffmann, Heiko, Kwon, Hyukseong
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Rahimi, Amir M
Hoffmann, Heiko
Kwon, Hyukseong
description Described is a system for action recognition through application of deep embedded clustering. For each image frame of an input video, the system computes skeletal joint-based pose features representing an action of a human in the image frame. Non-linear mapping of the pose features into an embedded action space is performed. Temporal classification of the action is performed and a set of categorical gesture-based labels is obtained. The set of categorical gesture-based labels is used to control movement of a machine.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11232296B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11232296B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11232296B23</originalsourceid><addsrcrecordid>eNrjZDBxTC7JzM9TSM5JLC7OTMtMTgRzS4sz89IVUlJTCxRSc5NSU1JSU4BKSotLUouAEjwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDQyNjIyNLMyciYGDUAVVYtOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Action classification using deep embedded clustering</title><source>esp@cenet</source><creator>Rahimi, Amir M ; Hoffmann, Heiko ; Kwon, Hyukseong</creator><creatorcontrib>Rahimi, Amir M ; Hoffmann, Heiko ; Kwon, Hyukseong</creatorcontrib><description>Described is a system for action recognition through application of deep embedded clustering. For each image frame of an input video, the system computes skeletal joint-based pose features representing an action of a human in the image frame. Non-linear mapping of the pose features into an embedded action space is performed. Temporal classification of the action is performed and a set of categorical gesture-based labels is obtained. The set of categorical gesture-based labels is used to control movement of a machine.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROLLING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; REGULATING ; SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220125&amp;DB=EPODOC&amp;CC=US&amp;NR=11232296B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220125&amp;DB=EPODOC&amp;CC=US&amp;NR=11232296B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Rahimi, Amir M</creatorcontrib><creatorcontrib>Hoffmann, Heiko</creatorcontrib><creatorcontrib>Kwon, Hyukseong</creatorcontrib><title>Action classification using deep embedded clustering</title><description>Described is a system for action recognition through application of deep embedded clustering. For each image frame of an input video, the system computes skeletal joint-based pose features representing an action of a human in the image frame. Non-linear mapping of the pose features into an embedded action space is performed. Temporal classification of the action is performed and a set of categorical gesture-based labels is obtained. The set of categorical gesture-based labels is used to control movement of a machine.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>REGULATING</subject><subject>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDBxTC7JzM9TSM5JLC7OTMtMTgRzS4sz89IVUlJTCxRSc5NSU1JSU4BKSotLUouAEjwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDQyNjIyNLMyciYGDUAVVYtOw</recordid><startdate>20220125</startdate><enddate>20220125</enddate><creator>Rahimi, Amir M</creator><creator>Hoffmann, Heiko</creator><creator>Kwon, Hyukseong</creator><scope>EVB</scope></search><sort><creationdate>20220125</creationdate><title>Action classification using deep embedded clustering</title><author>Rahimi, Amir M ; Hoffmann, Heiko ; Kwon, Hyukseong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11232296B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>REGULATING</topic><topic>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</topic><toplevel>online_resources</toplevel><creatorcontrib>Rahimi, Amir M</creatorcontrib><creatorcontrib>Hoffmann, Heiko</creatorcontrib><creatorcontrib>Kwon, Hyukseong</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rahimi, Amir M</au><au>Hoffmann, Heiko</au><au>Kwon, Hyukseong</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Action classification using deep embedded clustering</title><date>2022-01-25</date><risdate>2022</risdate><abstract>Described is a system for action recognition through application of deep embedded clustering. For each image frame of an input video, the system computes skeletal joint-based pose features representing an action of a human in the image frame. Non-linear mapping of the pose features into an embedded action space is performed. Temporal classification of the action is performed and a set of categorical gesture-based labels is obtained. The set of categorical gesture-based labels is used to control movement of a machine.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11232296B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONTROLLING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
REGULATING
SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
title Action classification using deep embedded clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T23%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Rahimi,%20Amir%20M&rft.date=2022-01-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11232296B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true