Action classification using deep embedded clustering
Described is a system for action recognition through application of deep embedded clustering. For each image frame of an input video, the system computes skeletal joint-based pose features representing an action of a human in the image frame. Non-linear mapping of the pose features into an embedded...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Rahimi, Amir M Hoffmann, Heiko Kwon, Hyukseong |
description | Described is a system for action recognition through application of deep embedded clustering. For each image frame of an input video, the system computes skeletal joint-based pose features representing an action of a human in the image frame. Non-linear mapping of the pose features into an embedded action space is performed. Temporal classification of the action is performed and a set of categorical gesture-based labels is obtained. The set of categorical gesture-based labels is used to control movement of a machine. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11232296B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11232296B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11232296B23</originalsourceid><addsrcrecordid>eNrjZDBxTC7JzM9TSM5JLC7OTMtMTgRzS4sz89IVUlJTCxRSc5NSU1JSU4BKSotLUouAEjwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDQyNjIyNLMyciYGDUAVVYtOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Action classification using deep embedded clustering</title><source>esp@cenet</source><creator>Rahimi, Amir M ; Hoffmann, Heiko ; Kwon, Hyukseong</creator><creatorcontrib>Rahimi, Amir M ; Hoffmann, Heiko ; Kwon, Hyukseong</creatorcontrib><description>Described is a system for action recognition through application of deep embedded clustering. For each image frame of an input video, the system computes skeletal joint-based pose features representing an action of a human in the image frame. Non-linear mapping of the pose features into an embedded action space is performed. Temporal classification of the action is performed and a set of categorical gesture-based labels is obtained. The set of categorical gesture-based labels is used to control movement of a machine.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROLLING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; REGULATING ; SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220125&DB=EPODOC&CC=US&NR=11232296B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220125&DB=EPODOC&CC=US&NR=11232296B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Rahimi, Amir M</creatorcontrib><creatorcontrib>Hoffmann, Heiko</creatorcontrib><creatorcontrib>Kwon, Hyukseong</creatorcontrib><title>Action classification using deep embedded clustering</title><description>Described is a system for action recognition through application of deep embedded clustering. For each image frame of an input video, the system computes skeletal joint-based pose features representing an action of a human in the image frame. Non-linear mapping of the pose features into an embedded action space is performed. Temporal classification of the action is performed and a set of categorical gesture-based labels is obtained. The set of categorical gesture-based labels is used to control movement of a machine.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>REGULATING</subject><subject>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDBxTC7JzM9TSM5JLC7OTMtMTgRzS4sz89IVUlJTCxRSc5NSU1JSU4BKSotLUouAEjwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDQyNjIyNLMyciYGDUAVVYtOw</recordid><startdate>20220125</startdate><enddate>20220125</enddate><creator>Rahimi, Amir M</creator><creator>Hoffmann, Heiko</creator><creator>Kwon, Hyukseong</creator><scope>EVB</scope></search><sort><creationdate>20220125</creationdate><title>Action classification using deep embedded clustering</title><author>Rahimi, Amir M ; Hoffmann, Heiko ; Kwon, Hyukseong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11232296B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>REGULATING</topic><topic>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</topic><toplevel>online_resources</toplevel><creatorcontrib>Rahimi, Amir M</creatorcontrib><creatorcontrib>Hoffmann, Heiko</creatorcontrib><creatorcontrib>Kwon, Hyukseong</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rahimi, Amir M</au><au>Hoffmann, Heiko</au><au>Kwon, Hyukseong</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Action classification using deep embedded clustering</title><date>2022-01-25</date><risdate>2022</risdate><abstract>Described is a system for action recognition through application of deep embedded clustering. For each image frame of an input video, the system computes skeletal joint-based pose features representing an action of a human in the image frame. Non-linear mapping of the pose features into an embedded action space is performed. Temporal classification of the action is performed and a set of categorical gesture-based labels is obtained. The set of categorical gesture-based labels is used to control movement of a machine.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11232296B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONTROLLING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS REGULATING SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES |
title | Action classification using deep embedded clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T23%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Rahimi,%20Amir%20M&rft.date=2022-01-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11232296B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |