Exploring ASR-free end-to-end modeling to improve spoken language understanding in a cloud-based dialog system

Systems and methods are provided for conducting a simulated conversation with a language learner include determining a first dialog state of the simulated conversation. First audio data corresponding to simulated speech based on the dialog state is transmitted. Second audio data corresponding to a v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tsuprun, Eugene, Ramanarayanan, Vikram, Evanini, Keelan, Qian, Yao, Suendermann-Oeft, David, Ubale, Rutuja, Lange, Patrick
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Tsuprun, Eugene
Ramanarayanan, Vikram
Evanini, Keelan
Qian, Yao
Suendermann-Oeft, David
Ubale, Rutuja
Lange, Patrick
description Systems and methods are provided for conducting a simulated conversation with a language learner include determining a first dialog state of the simulated conversation. First audio data corresponding to simulated speech based on the dialog state is transmitted. Second audio data corresponding to a variable length utterance spoken in response to the simulated speech is received. A fixed dimension vector is generated based on the variable length utterance. A semantic label is predicted for the variable-length utterance based on the fixed dimension vector. A second dialog state of the simulated conversation is determined based on the semantic label, and third audio data corresponding to simulated speech is transmitted based on the second dialog state.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11222627B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11222627B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11222627B13</originalsourceid><addsrcrecordid>eNqNyjEOwjAMQNEuDAi4gzlAhgYJZkBFzBTmyjRuFJHYUZIiuD1U4gBMb_h_XnHzil6SYwv79qKGRATERhVRXyCIIT_FIuBCTPIkyFEexOCR7YiWYGRDKRdkM42OAaH3Mhp1x0wGjEMvFvI7FwrLajagz7T6uajWp-Z6PCuK0lGO2BNT6W5tXWutt3p3qDf_PB9qKUI7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Exploring ASR-free end-to-end modeling to improve spoken language understanding in a cloud-based dialog system</title><source>esp@cenet</source><creator>Tsuprun, Eugene ; Ramanarayanan, Vikram ; Evanini, Keelan ; Qian, Yao ; Suendermann-Oeft, David ; Ubale, Rutuja ; Lange, Patrick</creator><creatorcontrib>Tsuprun, Eugene ; Ramanarayanan, Vikram ; Evanini, Keelan ; Qian, Yao ; Suendermann-Oeft, David ; Ubale, Rutuja ; Lange, Patrick</creatorcontrib><description>Systems and methods are provided for conducting a simulated conversation with a language learner include determining a first dialog state of the simulated conversation. First audio data corresponding to simulated speech based on the dialog state is transmitted. Second audio data corresponding to a variable length utterance spoken in response to the simulated speech is received. A fixed dimension vector is generated based on the variable length utterance. A semantic label is predicted for the variable-length utterance based on the fixed dimension vector. A second dialog state of the simulated conversation is determined based on the semantic label, and third audio data corresponding to simulated speech is transmitted based on the second dialog state.</description><language>eng</language><subject>ACOUSTICS ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220111&amp;DB=EPODOC&amp;CC=US&amp;NR=11222627B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220111&amp;DB=EPODOC&amp;CC=US&amp;NR=11222627B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Tsuprun, Eugene</creatorcontrib><creatorcontrib>Ramanarayanan, Vikram</creatorcontrib><creatorcontrib>Evanini, Keelan</creatorcontrib><creatorcontrib>Qian, Yao</creatorcontrib><creatorcontrib>Suendermann-Oeft, David</creatorcontrib><creatorcontrib>Ubale, Rutuja</creatorcontrib><creatorcontrib>Lange, Patrick</creatorcontrib><title>Exploring ASR-free end-to-end modeling to improve spoken language understanding in a cloud-based dialog system</title><description>Systems and methods are provided for conducting a simulated conversation with a language learner include determining a first dialog state of the simulated conversation. First audio data corresponding to simulated speech based on the dialog state is transmitted. Second audio data corresponding to a variable length utterance spoken in response to the simulated speech is received. A fixed dimension vector is generated based on the variable length utterance. A semantic label is predicted for the variable-length utterance based on the fixed dimension vector. A second dialog state of the simulated conversation is determined based on the semantic label, and third audio data corresponding to simulated speech is transmitted based on the second dialog state.</description><subject>ACOUSTICS</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMQNEuDAi4gzlAhgYJZkBFzBTmyjRuFJHYUZIiuD1U4gBMb_h_XnHzil6SYwv79qKGRATERhVRXyCIIT_FIuBCTPIkyFEexOCR7YiWYGRDKRdkM42OAaH3Mhp1x0wGjEMvFvI7FwrLajagz7T6uajWp-Z6PCuK0lGO2BNT6W5tXWutt3p3qDf_PB9qKUI7</recordid><startdate>20220111</startdate><enddate>20220111</enddate><creator>Tsuprun, Eugene</creator><creator>Ramanarayanan, Vikram</creator><creator>Evanini, Keelan</creator><creator>Qian, Yao</creator><creator>Suendermann-Oeft, David</creator><creator>Ubale, Rutuja</creator><creator>Lange, Patrick</creator><scope>EVB</scope></search><sort><creationdate>20220111</creationdate><title>Exploring ASR-free end-to-end modeling to improve spoken language understanding in a cloud-based dialog system</title><author>Tsuprun, Eugene ; Ramanarayanan, Vikram ; Evanini, Keelan ; Qian, Yao ; Suendermann-Oeft, David ; Ubale, Rutuja ; Lange, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11222627B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ACOUSTICS</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>Tsuprun, Eugene</creatorcontrib><creatorcontrib>Ramanarayanan, Vikram</creatorcontrib><creatorcontrib>Evanini, Keelan</creatorcontrib><creatorcontrib>Qian, Yao</creatorcontrib><creatorcontrib>Suendermann-Oeft, David</creatorcontrib><creatorcontrib>Ubale, Rutuja</creatorcontrib><creatorcontrib>Lange, Patrick</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsuprun, Eugene</au><au>Ramanarayanan, Vikram</au><au>Evanini, Keelan</au><au>Qian, Yao</au><au>Suendermann-Oeft, David</au><au>Ubale, Rutuja</au><au>Lange, Patrick</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Exploring ASR-free end-to-end modeling to improve spoken language understanding in a cloud-based dialog system</title><date>2022-01-11</date><risdate>2022</risdate><abstract>Systems and methods are provided for conducting a simulated conversation with a language learner include determining a first dialog state of the simulated conversation. First audio data corresponding to simulated speech based on the dialog state is transmitted. Second audio data corresponding to a variable length utterance spoken in response to the simulated speech is received. A fixed dimension vector is generated based on the variable length utterance. A semantic label is predicted for the variable-length utterance based on the fixed dimension vector. A second dialog state of the simulated conversation is determined based on the semantic label, and third audio data corresponding to simulated speech is transmitted based on the second dialog state.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11222627B1
source esp@cenet
subjects ACOUSTICS
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title Exploring ASR-free end-to-end modeling to improve spoken language understanding in a cloud-based dialog system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Tsuprun,%20Eugene&rft.date=2022-01-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11222627B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true