Circuitry for high-bandwidth, low-latency machine learning
The present disclosure relates generally to techniques for efficiently performing operations associated with artificial intelligence (AI), machine learning (ML), and/or deep learning (DL) applications, such as training and/or interference calculations, using an integrated circuit device. More specif...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Langhammer, Martin Hagiescu-Miriste, Andrei-Mihai |
description | The present disclosure relates generally to techniques for efficiently performing operations associated with artificial intelligence (AI), machine learning (ML), and/or deep learning (DL) applications, such as training and/or interference calculations, using an integrated circuit device. More specifically, the present disclosure relates to an integrated circuit design implemented to perform these operations with low latency and/or a high bandwidth of data. For example, embodiments of a computationally dense digital signal processing (DSP) circuitry, implemented to efficiently perform one or more arithmetic operations (e.g., a dot-product) on an input are disclosed. Moreover, embodiments described herein may relate to layout, design, and data scheduling of a processing element array implemented to compute matrix multiplications (e.g., systolic array multiplication). |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11216532B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11216532B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11216532B23</originalsourceid><addsrcrecordid>eNrjZLByzixKLs0sKapUSMsvUsjITM_QTUrMSynPTCnJ0FHIyS_XzUksSc1LrlTITUzOyMxLVchJTSzKy8xL52FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoZGhmamxkZORsbEqAEAeeMvJg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Circuitry for high-bandwidth, low-latency machine learning</title><source>esp@cenet</source><creator>Langhammer, Martin ; Hagiescu-Miriste, Andrei-Mihai</creator><creatorcontrib>Langhammer, Martin ; Hagiescu-Miriste, Andrei-Mihai</creatorcontrib><description>The present disclosure relates generally to techniques for efficiently performing operations associated with artificial intelligence (AI), machine learning (ML), and/or deep learning (DL) applications, such as training and/or interference calculations, using an integrated circuit device. More specifically, the present disclosure relates to an integrated circuit design implemented to perform these operations with low latency and/or a high bandwidth of data. For example, embodiments of a computationally dense digital signal processing (DSP) circuitry, implemented to efficiently perform one or more arithmetic operations (e.g., a dot-product) on an input are disclosed. Moreover, embodiments described herein may relate to layout, design, and data scheduling of a processing element array implemented to compute matrix multiplications (e.g., systolic array multiplication).</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220104&DB=EPODOC&CC=US&NR=11216532B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220104&DB=EPODOC&CC=US&NR=11216532B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Langhammer, Martin</creatorcontrib><creatorcontrib>Hagiescu-Miriste, Andrei-Mihai</creatorcontrib><title>Circuitry for high-bandwidth, low-latency machine learning</title><description>The present disclosure relates generally to techniques for efficiently performing operations associated with artificial intelligence (AI), machine learning (ML), and/or deep learning (DL) applications, such as training and/or interference calculations, using an integrated circuit device. More specifically, the present disclosure relates to an integrated circuit design implemented to perform these operations with low latency and/or a high bandwidth of data. For example, embodiments of a computationally dense digital signal processing (DSP) circuitry, implemented to efficiently perform one or more arithmetic operations (e.g., a dot-product) on an input are disclosed. Moreover, embodiments described herein may relate to layout, design, and data scheduling of a processing element array implemented to compute matrix multiplications (e.g., systolic array multiplication).</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLByzixKLs0sKapUSMsvUsjITM_QTUrMSynPTCnJ0FHIyS_XzUksSc1LrlTITUzOyMxLVchJTSzKy8xL52FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoZGhmamxkZORsbEqAEAeeMvJg</recordid><startdate>20220104</startdate><enddate>20220104</enddate><creator>Langhammer, Martin</creator><creator>Hagiescu-Miriste, Andrei-Mihai</creator><scope>EVB</scope></search><sort><creationdate>20220104</creationdate><title>Circuitry for high-bandwidth, low-latency machine learning</title><author>Langhammer, Martin ; Hagiescu-Miriste, Andrei-Mihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11216532B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Langhammer, Martin</creatorcontrib><creatorcontrib>Hagiescu-Miriste, Andrei-Mihai</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Langhammer, Martin</au><au>Hagiescu-Miriste, Andrei-Mihai</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Circuitry for high-bandwidth, low-latency machine learning</title><date>2022-01-04</date><risdate>2022</risdate><abstract>The present disclosure relates generally to techniques for efficiently performing operations associated with artificial intelligence (AI), machine learning (ML), and/or deep learning (DL) applications, such as training and/or interference calculations, using an integrated circuit device. More specifically, the present disclosure relates to an integrated circuit design implemented to perform these operations with low latency and/or a high bandwidth of data. For example, embodiments of a computationally dense digital signal processing (DSP) circuitry, implemented to efficiently perform one or more arithmetic operations (e.g., a dot-product) on an input are disclosed. Moreover, embodiments described herein may relate to layout, design, and data scheduling of a processing element array implemented to compute matrix multiplications (e.g., systolic array multiplication).</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11216532B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Circuitry for high-bandwidth, low-latency machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Langhammer,%20Martin&rft.date=2022-01-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11216532B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |