Filtering model training method and speech recognition method

A filtering model training method includes obtaining N original syllables, obtaining N recognized syllables, and obtaining N syllable distances based on the N original syllables and the N recognized syllables, where the N syllable distances are in a one-to-one correspondence with N syllable pairs, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nie, Weiran, Yu, Hai
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Nie, Weiran
Yu, Hai
description A filtering model training method includes obtaining N original syllables, obtaining N recognized syllables, and obtaining N syllable distances based on the N original syllables and the N recognized syllables, where the N syllable distances are in a one-to-one correspondence with N syllable pairs, the N original syllables and the N recognized syllables form the N syllable pairs, each syllable pair includes an original syllable and a recognized syllable that correspond to each other, and each syllable distance is used to indicate a similarity between an original syllable and a recognized syllable that are included in a corresponding syllable pair.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11211052B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11211052B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11211052B23</originalsourceid><addsrcrecordid>eNrjZLB1y8wpSS3KzEtXyM1PSc1RKClKzMwDc1NLMvJTFBLzUhSKC1JTkzMUilKT89PzMksy8_OgsjwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDQyNDQwNTIyciYGDUAOpMwcQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Filtering model training method and speech recognition method</title><source>esp@cenet</source><creator>Nie, Weiran ; Yu, Hai</creator><creatorcontrib>Nie, Weiran ; Yu, Hai</creatorcontrib><description>A filtering model training method includes obtaining N original syllables, obtaining N recognized syllables, and obtaining N syllable distances based on the N original syllables and the N recognized syllables, where the N syllable distances are in a one-to-one correspondence with N syllable pairs, the N original syllables and the N recognized syllables form the N syllable pairs, each syllable pair includes an original syllable and a recognized syllable that correspond to each other, and each syllable distance is used to indicate a similarity between an original syllable and a recognized syllable that are included in a corresponding syllable pair.</description><language>eng</language><subject>ACOUSTICS ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211228&amp;DB=EPODOC&amp;CC=US&amp;NR=11211052B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211228&amp;DB=EPODOC&amp;CC=US&amp;NR=11211052B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Nie, Weiran</creatorcontrib><creatorcontrib>Yu, Hai</creatorcontrib><title>Filtering model training method and speech recognition method</title><description>A filtering model training method includes obtaining N original syllables, obtaining N recognized syllables, and obtaining N syllable distances based on the N original syllables and the N recognized syllables, where the N syllable distances are in a one-to-one correspondence with N syllable pairs, the N original syllables and the N recognized syllables form the N syllable pairs, each syllable pair includes an original syllable and a recognized syllable that correspond to each other, and each syllable distance is used to indicate a similarity between an original syllable and a recognized syllable that are included in a corresponding syllable pair.</description><subject>ACOUSTICS</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB1y8wpSS3KzEtXyM1PSc1RKClKzMwDc1NLMvJTFBLzUhSKC1JTkzMUilKT89PzMksy8_OgsjwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDQyNDQwNTIyciYGDUAOpMwcQ</recordid><startdate>20211228</startdate><enddate>20211228</enddate><creator>Nie, Weiran</creator><creator>Yu, Hai</creator><scope>EVB</scope></search><sort><creationdate>20211228</creationdate><title>Filtering model training method and speech recognition method</title><author>Nie, Weiran ; Yu, Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11211052B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ACOUSTICS</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>Nie, Weiran</creatorcontrib><creatorcontrib>Yu, Hai</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nie, Weiran</au><au>Yu, Hai</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Filtering model training method and speech recognition method</title><date>2021-12-28</date><risdate>2021</risdate><abstract>A filtering model training method includes obtaining N original syllables, obtaining N recognized syllables, and obtaining N syllable distances based on the N original syllables and the N recognized syllables, where the N syllable distances are in a one-to-one correspondence with N syllable pairs, the N original syllables and the N recognized syllables form the N syllable pairs, each syllable pair includes an original syllable and a recognized syllable that correspond to each other, and each syllable distance is used to indicate a similarity between an original syllable and a recognized syllable that are included in a corresponding syllable pair.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11211052B2
source esp@cenet
subjects ACOUSTICS
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title Filtering model training method and speech recognition method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A34%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Nie,%20Weiran&rft.date=2021-12-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11211052B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true