Iterative supervised identification of non-dominant clusters

A method comprising determining a binary classification value for each of a plurality of data instances based on a first threshold value assigned to each of the plurality of data instances; applying at least one clustering model to a first subset of the plurality of data instances to identify one or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Singh, Vivek K, Sastry, Kumara, Baidya, Bikram, Kagalwalla, Abde Ali Hunaid, Gu, Allan
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Singh, Vivek K
Sastry, Kumara
Baidya, Bikram
Kagalwalla, Abde Ali Hunaid
Gu, Allan
description A method comprising determining a binary classification value for each of a plurality of data instances based on a first threshold value assigned to each of the plurality of data instances; applying at least one clustering model to a first subset of the plurality of data instances to identify one or more dominant clusters of data instances; determining a second threshold value to assign to a second plurality of data instances that are included within the one or more dominant clusters of data instances; and redetermining a binary classification value for each of the plurality of data instances based on the second threshold value assigned to the second plurality of data instances and the first threshold value, wherein the first threshold value is assigned to at least a portion of data instances of the plurality of data instances that are not included in the second plurality of data instances.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11176658B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11176658B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11176658B23</originalsourceid><addsrcrecordid>eNrjZLDxLEktSizJLEtVKC4tSC0qyyxOTVHITEnNK8lMy0wGyuTnKeSnKeTl5-mm5Odm5iXmlSgk55QWA7UV8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0NDczMzUwsnI2Ni1AAAUl4w2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Iterative supervised identification of non-dominant clusters</title><source>esp@cenet</source><creator>Singh, Vivek K ; Sastry, Kumara ; Baidya, Bikram ; Kagalwalla, Abde Ali Hunaid ; Gu, Allan</creator><creatorcontrib>Singh, Vivek K ; Sastry, Kumara ; Baidya, Bikram ; Kagalwalla, Abde Ali Hunaid ; Gu, Allan</creatorcontrib><description>A method comprising determining a binary classification value for each of a plurality of data instances based on a first threshold value assigned to each of the plurality of data instances; applying at least one clustering model to a first subset of the plurality of data instances to identify one or more dominant clusters of data instances; determining a second threshold value to assign to a second plurality of data instances that are included within the one or more dominant clusters of data instances; and redetermining a binary classification value for each of the plurality of data instances based on the second threshold value assigned to the second plurality of data instances and the first threshold value, wherein the first threshold value is assigned to at least a portion of data instances of the plurality of data instances that are not included in the second plurality of data instances.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211116&amp;DB=EPODOC&amp;CC=US&amp;NR=11176658B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211116&amp;DB=EPODOC&amp;CC=US&amp;NR=11176658B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Singh, Vivek K</creatorcontrib><creatorcontrib>Sastry, Kumara</creatorcontrib><creatorcontrib>Baidya, Bikram</creatorcontrib><creatorcontrib>Kagalwalla, Abde Ali Hunaid</creatorcontrib><creatorcontrib>Gu, Allan</creatorcontrib><title>Iterative supervised identification of non-dominant clusters</title><description>A method comprising determining a binary classification value for each of a plurality of data instances based on a first threshold value assigned to each of the plurality of data instances; applying at least one clustering model to a first subset of the plurality of data instances to identify one or more dominant clusters of data instances; determining a second threshold value to assign to a second plurality of data instances that are included within the one or more dominant clusters of data instances; and redetermining a binary classification value for each of the plurality of data instances based on the second threshold value assigned to the second plurality of data instances and the first threshold value, wherein the first threshold value is assigned to at least a portion of data instances of the plurality of data instances that are not included in the second plurality of data instances.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDxLEktSizJLEtVKC4tSC0qyyxOTVHITEnNK8lMy0wGyuTnKeSnKeTl5-mm5Odm5iXmlSgk55QWA7UV8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0NDczMzUwsnI2Ni1AAAUl4w2g</recordid><startdate>20211116</startdate><enddate>20211116</enddate><creator>Singh, Vivek K</creator><creator>Sastry, Kumara</creator><creator>Baidya, Bikram</creator><creator>Kagalwalla, Abde Ali Hunaid</creator><creator>Gu, Allan</creator><scope>EVB</scope></search><sort><creationdate>20211116</creationdate><title>Iterative supervised identification of non-dominant clusters</title><author>Singh, Vivek K ; Sastry, Kumara ; Baidya, Bikram ; Kagalwalla, Abde Ali Hunaid ; Gu, Allan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11176658B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Singh, Vivek K</creatorcontrib><creatorcontrib>Sastry, Kumara</creatorcontrib><creatorcontrib>Baidya, Bikram</creatorcontrib><creatorcontrib>Kagalwalla, Abde Ali Hunaid</creatorcontrib><creatorcontrib>Gu, Allan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Singh, Vivek K</au><au>Sastry, Kumara</au><au>Baidya, Bikram</au><au>Kagalwalla, Abde Ali Hunaid</au><au>Gu, Allan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Iterative supervised identification of non-dominant clusters</title><date>2021-11-16</date><risdate>2021</risdate><abstract>A method comprising determining a binary classification value for each of a plurality of data instances based on a first threshold value assigned to each of the plurality of data instances; applying at least one clustering model to a first subset of the plurality of data instances to identify one or more dominant clusters of data instances; determining a second threshold value to assign to a second plurality of data instances that are included within the one or more dominant clusters of data instances; and redetermining a binary classification value for each of the plurality of data instances based on the second threshold value assigned to the second plurality of data instances and the first threshold value, wherein the first threshold value is assigned to at least a portion of data instances of the plurality of data instances that are not included in the second plurality of data instances.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11176658B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Iterative supervised identification of non-dominant clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Singh,%20Vivek%20K&rft.date=2021-11-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11176658B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true