Handwriting detector, extractor, and language classifier

Disclosed are methods for handwriting recognition. In some aspects, an image representing a page of a sample document is analyzed to identify a region having indications of handwriting. The region is analyzed to determine frequencies of a plurality of geometric features within the region. The freque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Young, Darrell L, Holley, Kevin C
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Young, Darrell L
Holley, Kevin C
description Disclosed are methods for handwriting recognition. In some aspects, an image representing a page of a sample document is analyzed to identify a region having indications of handwriting. The region is analyzed to determine frequencies of a plurality of geometric features within the region. The frequencies may be compared to profiles or histograms of known language types, to determine if there are similarities between the frequencies in the sample document relative to those of the known language types. In some aspects, machine learning may be used to characterize the document as a particular language type based on the frequencies of the geometric features.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11176361B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11176361B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11176361B23</originalsourceid><addsrcrecordid>eNrjZLDwSMxLKS_KLMnMS1dISS1JTS7JL9JRSK0oKUqEMIHyCjmJeemliempCsk5icXFmWmZqUU8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSQ-NNjQ0NDczNjM0MnImBg1AB4LLpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Handwriting detector, extractor, and language classifier</title><source>esp@cenet</source><creator>Young, Darrell L ; Holley, Kevin C</creator><creatorcontrib>Young, Darrell L ; Holley, Kevin C</creatorcontrib><description>Disclosed are methods for handwriting recognition. In some aspects, an image representing a page of a sample document is analyzed to identify a region having indications of handwriting. The region is analyzed to determine frequencies of a plurality of geometric features within the region. The frequencies may be compared to profiles or histograms of known language types, to determine if there are similarities between the frequencies in the sample document relative to those of the known language types. In some aspects, machine learning may be used to characterize the document as a particular language type based on the frequencies of the geometric features.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211116&amp;DB=EPODOC&amp;CC=US&amp;NR=11176361B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211116&amp;DB=EPODOC&amp;CC=US&amp;NR=11176361B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Young, Darrell L</creatorcontrib><creatorcontrib>Holley, Kevin C</creatorcontrib><title>Handwriting detector, extractor, and language classifier</title><description>Disclosed are methods for handwriting recognition. In some aspects, an image representing a page of a sample document is analyzed to identify a region having indications of handwriting. The region is analyzed to determine frequencies of a plurality of geometric features within the region. The frequencies may be compared to profiles or histograms of known language types, to determine if there are similarities between the frequencies in the sample document relative to those of the known language types. In some aspects, machine learning may be used to characterize the document as a particular language type based on the frequencies of the geometric features.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDwSMxLKS_KLMnMS1dISS1JTS7JL9JRSK0oKUqEMIHyCjmJeemliempCsk5icXFmWmZqUU8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSQ-NNjQ0NDczNjM0MnImBg1AB4LLpA</recordid><startdate>20211116</startdate><enddate>20211116</enddate><creator>Young, Darrell L</creator><creator>Holley, Kevin C</creator><scope>EVB</scope></search><sort><creationdate>20211116</creationdate><title>Handwriting detector, extractor, and language classifier</title><author>Young, Darrell L ; Holley, Kevin C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11176361B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Young, Darrell L</creatorcontrib><creatorcontrib>Holley, Kevin C</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Young, Darrell L</au><au>Holley, Kevin C</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Handwriting detector, extractor, and language classifier</title><date>2021-11-16</date><risdate>2021</risdate><abstract>Disclosed are methods for handwriting recognition. In some aspects, an image representing a page of a sample document is analyzed to identify a region having indications of handwriting. The region is analyzed to determine frequencies of a plurality of geometric features within the region. The frequencies may be compared to profiles or histograms of known language types, to determine if there are similarities between the frequencies in the sample document relative to those of the known language types. In some aspects, machine learning may be used to characterize the document as a particular language type based on the frequencies of the geometric features.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11176361B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Handwriting detector, extractor, and language classifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Young,%20Darrell%20L&rft.date=2021-11-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11176361B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true