Automated detection and approximation of objects in video
Automated detection and approximation of objects in a video, including: (a) sampling a provided digital video, to obtain a set of sampled frames; (b) applying an object detection algorithm to the sampled frames, to detect objects appearing in the sampled frames; (c) based on the detections in the sa...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Barzelay, Udi Hakim, Tal Porat, Dror Nechemia Rotman, Daniel |
description | Automated detection and approximation of objects in a video, including: (a) sampling a provided digital video, to obtain a set of sampled frames; (b) applying an object detection algorithm to the sampled frames, to detect objects appearing in the sampled frames; (c) based on the detections in the sampled frames, applying an object approximation algorithm to each sequence of frames that lie between the sampled frames, to approximately detect objects appearing in each of the sequences; (d) applying a trained regression model to each of the sequences, to estimate a quality of the approximate detection of objects in the respective sequence; (e) applying the object detection algorithm to one or more frames in those of the sequences whose quality of the approximate detection is below a threshold, to detect objects appearing in those frames. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11157744B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11157744B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11157744B23</originalsourceid><addsrcrecordid>eNrjZLB0LC3Jz00sSU1RSEktSU0uyczPU0jMS1FILCgoyq_IBEqBRPLTFPKTsoDSxQqZeQplmSmp-TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDQ0NTc3MTEyciYGDUAXQ0u_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automated detection and approximation of objects in video</title><source>esp@cenet</source><creator>Barzelay, Udi ; Hakim, Tal ; Porat, Dror ; Nechemia Rotman, Daniel</creator><creatorcontrib>Barzelay, Udi ; Hakim, Tal ; Porat, Dror ; Nechemia Rotman, Daniel</creatorcontrib><description>Automated detection and approximation of objects in a video, including: (a) sampling a provided digital video, to obtain a set of sampled frames; (b) applying an object detection algorithm to the sampled frames, to detect objects appearing in the sampled frames; (c) based on the detections in the sampled frames, applying an object approximation algorithm to each sequence of frames that lie between the sampled frames, to approximately detect objects appearing in each of the sequences; (d) applying a trained regression model to each of the sequences, to estimate a quality of the approximate detection of objects in the respective sequence; (e) applying the object detection algorithm to one or more frames in those of the sequences whose quality of the approximate detection is below a threshold, to detect objects appearing in those frames.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211026&DB=EPODOC&CC=US&NR=11157744B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211026&DB=EPODOC&CC=US&NR=11157744B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Barzelay, Udi</creatorcontrib><creatorcontrib>Hakim, Tal</creatorcontrib><creatorcontrib>Porat, Dror</creatorcontrib><creatorcontrib>Nechemia Rotman, Daniel</creatorcontrib><title>Automated detection and approximation of objects in video</title><description>Automated detection and approximation of objects in a video, including: (a) sampling a provided digital video, to obtain a set of sampled frames; (b) applying an object detection algorithm to the sampled frames, to detect objects appearing in the sampled frames; (c) based on the detections in the sampled frames, applying an object approximation algorithm to each sequence of frames that lie between the sampled frames, to approximately detect objects appearing in each of the sequences; (d) applying a trained regression model to each of the sequences, to estimate a quality of the approximate detection of objects in the respective sequence; (e) applying the object detection algorithm to one or more frames in those of the sequences whose quality of the approximate detection is below a threshold, to detect objects appearing in those frames.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB0LC3Jz00sSU1RSEktSU0uyczPU0jMS1FILCgoyq_IBEqBRPLTFPKTsoDSxQqZeQplmSmp-TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDQ0NTc3MTEyciYGDUAXQ0u_g</recordid><startdate>20211026</startdate><enddate>20211026</enddate><creator>Barzelay, Udi</creator><creator>Hakim, Tal</creator><creator>Porat, Dror</creator><creator>Nechemia Rotman, Daniel</creator><scope>EVB</scope></search><sort><creationdate>20211026</creationdate><title>Automated detection and approximation of objects in video</title><author>Barzelay, Udi ; Hakim, Tal ; Porat, Dror ; Nechemia Rotman, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11157744B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Barzelay, Udi</creatorcontrib><creatorcontrib>Hakim, Tal</creatorcontrib><creatorcontrib>Porat, Dror</creatorcontrib><creatorcontrib>Nechemia Rotman, Daniel</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barzelay, Udi</au><au>Hakim, Tal</au><au>Porat, Dror</au><au>Nechemia Rotman, Daniel</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automated detection and approximation of objects in video</title><date>2021-10-26</date><risdate>2021</risdate><abstract>Automated detection and approximation of objects in a video, including: (a) sampling a provided digital video, to obtain a set of sampled frames; (b) applying an object detection algorithm to the sampled frames, to detect objects appearing in the sampled frames; (c) based on the detections in the sampled frames, applying an object approximation algorithm to each sequence of frames that lie between the sampled frames, to approximately detect objects appearing in each of the sequences; (d) applying a trained regression model to each of the sequences, to estimate a quality of the approximate detection of objects in the respective sequence; (e) applying the object detection algorithm to one or more frames in those of the sequences whose quality of the approximate detection is below a threshold, to detect objects appearing in those frames.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11157744B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Automated detection and approximation of objects in video |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Barzelay,%20Udi&rft.date=2021-10-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11157744B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |