Automated detection and approximation of objects in video

Automated detection and approximation of objects in a video, including: (a) sampling a provided digital video, to obtain a set of sampled frames; (b) applying an object detection algorithm to the sampled frames, to detect objects appearing in the sampled frames; (c) based on the detections in the sa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Barzelay, Udi, Hakim, Tal, Porat, Dror, Nechemia Rotman, Daniel
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Barzelay, Udi
Hakim, Tal
Porat, Dror
Nechemia Rotman, Daniel
description Automated detection and approximation of objects in a video, including: (a) sampling a provided digital video, to obtain a set of sampled frames; (b) applying an object detection algorithm to the sampled frames, to detect objects appearing in the sampled frames; (c) based on the detections in the sampled frames, applying an object approximation algorithm to each sequence of frames that lie between the sampled frames, to approximately detect objects appearing in each of the sequences; (d) applying a trained regression model to each of the sequences, to estimate a quality of the approximate detection of objects in the respective sequence; (e) applying the object detection algorithm to one or more frames in those of the sequences whose quality of the approximate detection is below a threshold, to detect objects appearing in those frames.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11157744B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11157744B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11157744B23</originalsourceid><addsrcrecordid>eNrjZLB0LC3Jz00sSU1RSEktSU0uyczPU0jMS1FILCgoyq_IBEqBRPLTFPKTsoDSxQqZeQplmSmp-TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDQ0NTc3MTEyciYGDUAXQ0u_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automated detection and approximation of objects in video</title><source>esp@cenet</source><creator>Barzelay, Udi ; Hakim, Tal ; Porat, Dror ; Nechemia Rotman, Daniel</creator><creatorcontrib>Barzelay, Udi ; Hakim, Tal ; Porat, Dror ; Nechemia Rotman, Daniel</creatorcontrib><description>Automated detection and approximation of objects in a video, including: (a) sampling a provided digital video, to obtain a set of sampled frames; (b) applying an object detection algorithm to the sampled frames, to detect objects appearing in the sampled frames; (c) based on the detections in the sampled frames, applying an object approximation algorithm to each sequence of frames that lie between the sampled frames, to approximately detect objects appearing in each of the sequences; (d) applying a trained regression model to each of the sequences, to estimate a quality of the approximate detection of objects in the respective sequence; (e) applying the object detection algorithm to one or more frames in those of the sequences whose quality of the approximate detection is below a threshold, to detect objects appearing in those frames.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211026&amp;DB=EPODOC&amp;CC=US&amp;NR=11157744B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211026&amp;DB=EPODOC&amp;CC=US&amp;NR=11157744B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Barzelay, Udi</creatorcontrib><creatorcontrib>Hakim, Tal</creatorcontrib><creatorcontrib>Porat, Dror</creatorcontrib><creatorcontrib>Nechemia Rotman, Daniel</creatorcontrib><title>Automated detection and approximation of objects in video</title><description>Automated detection and approximation of objects in a video, including: (a) sampling a provided digital video, to obtain a set of sampled frames; (b) applying an object detection algorithm to the sampled frames, to detect objects appearing in the sampled frames; (c) based on the detections in the sampled frames, applying an object approximation algorithm to each sequence of frames that lie between the sampled frames, to approximately detect objects appearing in each of the sequences; (d) applying a trained regression model to each of the sequences, to estimate a quality of the approximate detection of objects in the respective sequence; (e) applying the object detection algorithm to one or more frames in those of the sequences whose quality of the approximate detection is below a threshold, to detect objects appearing in those frames.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB0LC3Jz00sSU1RSEktSU0uyczPU0jMS1FILCgoyq_IBEqBRPLTFPKTsoDSxQqZeQplmSmp-TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDQ0NTc3MTEyciYGDUAXQ0u_g</recordid><startdate>20211026</startdate><enddate>20211026</enddate><creator>Barzelay, Udi</creator><creator>Hakim, Tal</creator><creator>Porat, Dror</creator><creator>Nechemia Rotman, Daniel</creator><scope>EVB</scope></search><sort><creationdate>20211026</creationdate><title>Automated detection and approximation of objects in video</title><author>Barzelay, Udi ; Hakim, Tal ; Porat, Dror ; Nechemia Rotman, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11157744B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Barzelay, Udi</creatorcontrib><creatorcontrib>Hakim, Tal</creatorcontrib><creatorcontrib>Porat, Dror</creatorcontrib><creatorcontrib>Nechemia Rotman, Daniel</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barzelay, Udi</au><au>Hakim, Tal</au><au>Porat, Dror</au><au>Nechemia Rotman, Daniel</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automated detection and approximation of objects in video</title><date>2021-10-26</date><risdate>2021</risdate><abstract>Automated detection and approximation of objects in a video, including: (a) sampling a provided digital video, to obtain a set of sampled frames; (b) applying an object detection algorithm to the sampled frames, to detect objects appearing in the sampled frames; (c) based on the detections in the sampled frames, applying an object approximation algorithm to each sequence of frames that lie between the sampled frames, to approximately detect objects appearing in each of the sequences; (d) applying a trained regression model to each of the sequences, to estimate a quality of the approximate detection of objects in the respective sequence; (e) applying the object detection algorithm to one or more frames in those of the sequences whose quality of the approximate detection is below a threshold, to detect objects appearing in those frames.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11157744B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Automated detection and approximation of objects in video
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Barzelay,%20Udi&rft.date=2021-10-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11157744B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true