Methods and apparatus to perform image analyses in a computing environment

An apparatus includes a feature extractor to generate image descriptors based on retail product tag images corresponding to a retailer category; a probability density function generator to generate a probability density function of probability values corresponding to visual features represented in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tovar Velasco, Javier, Arroyo, Roberto, Almazán, Emilio, González Serrador, Diego
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Tovar Velasco, Javier
Arroyo, Roberto
Almazán, Emilio
González Serrador, Diego
description An apparatus includes a feature extractor to generate image descriptors based on retail product tag images corresponding to a retailer category; a probability density function generator to generate a probability density function of probability values corresponding to visual features represented in the image descriptors; a sample selector to select ones of the probability values based on a sample selection algorithm that identifies positions in the probability density function of the ones of the probability values to be selected; a category signature generator to generate a category signature based on the selected ones of the probability values; and a processor to train a convolutional neural network (CNN) based on a feature descriptor and one of the retail product tag images, the feature descriptor including the category signature concatenated to one of the image descriptors, the training to cause the CNN to classify the one of the retail product tag images as a type of product tag.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11151425B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11151425B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11151425B23</originalsourceid><addsrcrecordid>eNqNyrENwkAMQNFrKBCwgxmA4gJZAARCSFRAHVmJE07K2dbZQWJ7KBiA6hfvz8PlSv6UzgC5A1TFgj4ZuIBS6aVkSBkH-jKObyODxIDQStbJEw9A_EpFOBP7Msx6HI1Wvy7C-nS8H84bUmnIFFti8uZxizHWcVfV-2r7z_MBNmo1aQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Methods and apparatus to perform image analyses in a computing environment</title><source>esp@cenet</source><creator>Tovar Velasco, Javier ; Arroyo, Roberto ; Almazán, Emilio ; González Serrador, Diego</creator><creatorcontrib>Tovar Velasco, Javier ; Arroyo, Roberto ; Almazán, Emilio ; González Serrador, Diego</creatorcontrib><description>An apparatus includes a feature extractor to generate image descriptors based on retail product tag images corresponding to a retailer category; a probability density function generator to generate a probability density function of probability values corresponding to visual features represented in the image descriptors; a sample selector to select ones of the probability values based on a sample selection algorithm that identifies positions in the probability density function of the ones of the probability values to be selected; a category signature generator to generate a category signature based on the selected ones of the probability values; and a processor to train a convolutional neural network (CNN) based on a feature descriptor and one of the retail product tag images, the feature descriptor including the category signature concatenated to one of the image descriptors, the training to cause the CNN to classify the one of the retail product tag images as a type of product tag.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211019&amp;DB=EPODOC&amp;CC=US&amp;NR=11151425B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211019&amp;DB=EPODOC&amp;CC=US&amp;NR=11151425B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Tovar Velasco, Javier</creatorcontrib><creatorcontrib>Arroyo, Roberto</creatorcontrib><creatorcontrib>Almazán, Emilio</creatorcontrib><creatorcontrib>González Serrador, Diego</creatorcontrib><title>Methods and apparatus to perform image analyses in a computing environment</title><description>An apparatus includes a feature extractor to generate image descriptors based on retail product tag images corresponding to a retailer category; a probability density function generator to generate a probability density function of probability values corresponding to visual features represented in the image descriptors; a sample selector to select ones of the probability values based on a sample selection algorithm that identifies positions in the probability density function of the ones of the probability values to be selected; a category signature generator to generate a category signature based on the selected ones of the probability values; and a processor to train a convolutional neural network (CNN) based on a feature descriptor and one of the retail product tag images, the feature descriptor including the category signature concatenated to one of the image descriptors, the training to cause the CNN to classify the one of the retail product tag images as a type of product tag.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrENwkAMQNFrKBCwgxmA4gJZAARCSFRAHVmJE07K2dbZQWJ7KBiA6hfvz8PlSv6UzgC5A1TFgj4ZuIBS6aVkSBkH-jKObyODxIDQStbJEw9A_EpFOBP7Msx6HI1Wvy7C-nS8H84bUmnIFFti8uZxizHWcVfV-2r7z_MBNmo1aQ</recordid><startdate>20211019</startdate><enddate>20211019</enddate><creator>Tovar Velasco, Javier</creator><creator>Arroyo, Roberto</creator><creator>Almazán, Emilio</creator><creator>González Serrador, Diego</creator><scope>EVB</scope></search><sort><creationdate>20211019</creationdate><title>Methods and apparatus to perform image analyses in a computing environment</title><author>Tovar Velasco, Javier ; Arroyo, Roberto ; Almazán, Emilio ; González Serrador, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11151425B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Tovar Velasco, Javier</creatorcontrib><creatorcontrib>Arroyo, Roberto</creatorcontrib><creatorcontrib>Almazán, Emilio</creatorcontrib><creatorcontrib>González Serrador, Diego</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tovar Velasco, Javier</au><au>Arroyo, Roberto</au><au>Almazán, Emilio</au><au>González Serrador, Diego</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Methods and apparatus to perform image analyses in a computing environment</title><date>2021-10-19</date><risdate>2021</risdate><abstract>An apparatus includes a feature extractor to generate image descriptors based on retail product tag images corresponding to a retailer category; a probability density function generator to generate a probability density function of probability values corresponding to visual features represented in the image descriptors; a sample selector to select ones of the probability values based on a sample selection algorithm that identifies positions in the probability density function of the ones of the probability values to be selected; a category signature generator to generate a category signature based on the selected ones of the probability values; and a processor to train a convolutional neural network (CNN) based on a feature descriptor and one of the retail product tag images, the feature descriptor including the category signature concatenated to one of the image descriptors, the training to cause the CNN to classify the one of the retail product tag images as a type of product tag.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11151425B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Methods and apparatus to perform image analyses in a computing environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Tovar%20Velasco,%20Javier&rft.date=2021-10-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11151425B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true