Dynamic subscriber network physical impairment detection techniques

Systems and techniques are disclosed for using machine learning to dynamically detect physical impairments in lines of a subscriber network. In some implementations, per-tone data for a line of a subscriber network and data indicating a set of one or more scores is obtained. Each score included in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wilson, Arlynn W, Nyembe, Armand Nokbak, Raghavendra, Ramya, Lyon, Jeremy, Barrett, Robert
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Wilson, Arlynn W
Nyembe, Armand Nokbak
Raghavendra, Ramya
Lyon, Jeremy
Barrett, Robert
description Systems and techniques are disclosed for using machine learning to dynamically detect physical impairments in lines of a subscriber network. In some implementations, per-tone data for a line of a subscriber network and data indicating a set of one or more scores is obtained. Each score included in the set of scores indicates a conditional likelihood that the line has a type of impairment with respect to a different feature subset ensemble. The per-tone data and the data indicating the set of one or more scores is provided as input to a model. The model is trained to output, for each of different sets of feature subset ensembles, a confidence score representing an overall likelihood that a particular line has a physical impairment. Data indicating a particular confidence score representing an overall likelihood that the line has the physical impairment is obtained. The particular confidence score is provided for output.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11140063B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11140063B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11140063B23</originalsourceid><addsrcrecordid>eNrjZHB2qcxLzM1MViguTSpOLspMSi1SyEstKc8vylYoyKgszkxOzFHIzC1IzCzKTc0rUUhJLUlNLsnMz1MA0hl5mYWlqcU8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxORVoZHxosKGhoYmBgZmxk5ExMWoA96AzjA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Dynamic subscriber network physical impairment detection techniques</title><source>esp@cenet</source><creator>Wilson, Arlynn W ; Nyembe, Armand Nokbak ; Raghavendra, Ramya ; Lyon, Jeremy ; Barrett, Robert</creator><creatorcontrib>Wilson, Arlynn W ; Nyembe, Armand Nokbak ; Raghavendra, Ramya ; Lyon, Jeremy ; Barrett, Robert</creatorcontrib><description>Systems and techniques are disclosed for using machine learning to dynamically detect physical impairments in lines of a subscriber network. In some implementations, per-tone data for a line of a subscriber network and data indicating a set of one or more scores is obtained. Each score included in the set of scores indicates a conditional likelihood that the line has a type of impairment with respect to a different feature subset ensemble. The per-tone data and the data indicating the set of one or more scores is provided as input to a model. The model is trained to output, for each of different sets of feature subset ensembles, a confidence score representing an overall likelihood that a particular line has a physical impairment. Data indicating a particular confidence score representing an overall likelihood that the line has the physical impairment is obtained. The particular confidence score is provided for output.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211005&amp;DB=EPODOC&amp;CC=US&amp;NR=11140063B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211005&amp;DB=EPODOC&amp;CC=US&amp;NR=11140063B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Wilson, Arlynn W</creatorcontrib><creatorcontrib>Nyembe, Armand Nokbak</creatorcontrib><creatorcontrib>Raghavendra, Ramya</creatorcontrib><creatorcontrib>Lyon, Jeremy</creatorcontrib><creatorcontrib>Barrett, Robert</creatorcontrib><title>Dynamic subscriber network physical impairment detection techniques</title><description>Systems and techniques are disclosed for using machine learning to dynamically detect physical impairments in lines of a subscriber network. In some implementations, per-tone data for a line of a subscriber network and data indicating a set of one or more scores is obtained. Each score included in the set of scores indicates a conditional likelihood that the line has a type of impairment with respect to a different feature subset ensemble. The per-tone data and the data indicating the set of one or more scores is provided as input to a model. The model is trained to output, for each of different sets of feature subset ensembles, a confidence score representing an overall likelihood that a particular line has a physical impairment. Data indicating a particular confidence score representing an overall likelihood that the line has the physical impairment is obtained. The particular confidence score is provided for output.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB2qcxLzM1MViguTSpOLspMSi1SyEstKc8vylYoyKgszkxOzFHIzC1IzCzKTc0rUUhJLUlNLsnMz1MA0hl5mYWlqcU8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxORVoZHxosKGhoYmBgZmxk5ExMWoA96AzjA</recordid><startdate>20211005</startdate><enddate>20211005</enddate><creator>Wilson, Arlynn W</creator><creator>Nyembe, Armand Nokbak</creator><creator>Raghavendra, Ramya</creator><creator>Lyon, Jeremy</creator><creator>Barrett, Robert</creator><scope>EVB</scope></search><sort><creationdate>20211005</creationdate><title>Dynamic subscriber network physical impairment detection techniques</title><author>Wilson, Arlynn W ; Nyembe, Armand Nokbak ; Raghavendra, Ramya ; Lyon, Jeremy ; Barrett, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11140063B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Arlynn W</creatorcontrib><creatorcontrib>Nyembe, Armand Nokbak</creatorcontrib><creatorcontrib>Raghavendra, Ramya</creatorcontrib><creatorcontrib>Lyon, Jeremy</creatorcontrib><creatorcontrib>Barrett, Robert</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wilson, Arlynn W</au><au>Nyembe, Armand Nokbak</au><au>Raghavendra, Ramya</au><au>Lyon, Jeremy</au><au>Barrett, Robert</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Dynamic subscriber network physical impairment detection techniques</title><date>2021-10-05</date><risdate>2021</risdate><abstract>Systems and techniques are disclosed for using machine learning to dynamically detect physical impairments in lines of a subscriber network. In some implementations, per-tone data for a line of a subscriber network and data indicating a set of one or more scores is obtained. Each score included in the set of scores indicates a conditional likelihood that the line has a type of impairment with respect to a different feature subset ensemble. The per-tone data and the data indicating the set of one or more scores is provided as input to a model. The model is trained to output, for each of different sets of feature subset ensembles, a confidence score representing an overall likelihood that a particular line has a physical impairment. Data indicating a particular confidence score representing an overall likelihood that the line has the physical impairment is obtained. The particular confidence score is provided for output.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11140063B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Dynamic subscriber network physical impairment detection techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A03%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Wilson,%20Arlynn%20W&rft.date=2021-10-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11140063B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true