Model learning device, method and recording medium for learning neural network model

A model learning device comprises: an initial value setting part that uses a parameter of a learned first model including a neural network to set a parameter of a second model including a neural network having a same network structure as the first model; a first output probability distribution calcu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nakamura, Takashi, Asami, Taichi, Masumura, Ryo, Masataki, Hirokazu
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Nakamura, Takashi
Asami, Taichi
Masumura, Ryo
Masataki, Hirokazu
description A model learning device comprises: an initial value setting part that uses a parameter of a learned first model including a neural network to set a parameter of a second model including a neural network having a same network structure as the first model; a first output probability distribution calculating part that calculates a first output probability distribution including a distribution of an output probability of each unit on an output layer, using learning features and the first model; a second output probability distribution calculating part that calculates a second output probability distribution including a distribution of an output probability of each unit on the output layer, using learning features and the second model; and a modified model update part that obtains a weighted sum of a second loss function calculated from correct information and from the second output probability distribution, and a cross entropy between the first output probability distribution and the second output probability distribution, and updates the parameter of the second model so as to reduce the weighted sum.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11081105B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11081105B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11081105B23</originalsourceid><addsrcrecordid>eNrjZAjxzU9JzVHISU0sysvMS1dISS3LTE7VUchNLcnIT1FIzEtRKEpNzi9KAUnmpqZkluYqpOUXITTkpZYWJeYAqZLy_KJshVyQcTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5Fag-PjTY0NDAAohNnYyMiVEDAHk6OLk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Model learning device, method and recording medium for learning neural network model</title><source>esp@cenet</source><creator>Nakamura, Takashi ; Asami, Taichi ; Masumura, Ryo ; Masataki, Hirokazu</creator><creatorcontrib>Nakamura, Takashi ; Asami, Taichi ; Masumura, Ryo ; Masataki, Hirokazu</creatorcontrib><description>A model learning device comprises: an initial value setting part that uses a parameter of a learned first model including a neural network to set a parameter of a second model including a neural network having a same network structure as the first model; a first output probability distribution calculating part that calculates a first output probability distribution including a distribution of an output probability of each unit on an output layer, using learning features and the first model; a second output probability distribution calculating part that calculates a second output probability distribution including a distribution of an output probability of each unit on the output layer, using learning features and the second model; and a modified model update part that obtains a weighted sum of a second loss function calculated from correct information and from the second output probability distribution, and a cross entropy between the first output probability distribution and the second output probability distribution, and updates the parameter of the second model so as to reduce the weighted sum.</description><language>eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210803&amp;DB=EPODOC&amp;CC=US&amp;NR=11081105B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210803&amp;DB=EPODOC&amp;CC=US&amp;NR=11081105B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Nakamura, Takashi</creatorcontrib><creatorcontrib>Asami, Taichi</creatorcontrib><creatorcontrib>Masumura, Ryo</creatorcontrib><creatorcontrib>Masataki, Hirokazu</creatorcontrib><title>Model learning device, method and recording medium for learning neural network model</title><description>A model learning device comprises: an initial value setting part that uses a parameter of a learned first model including a neural network to set a parameter of a second model including a neural network having a same network structure as the first model; a first output probability distribution calculating part that calculates a first output probability distribution including a distribution of an output probability of each unit on an output layer, using learning features and the first model; a second output probability distribution calculating part that calculates a second output probability distribution including a distribution of an output probability of each unit on the output layer, using learning features and the second model; and a modified model update part that obtains a weighted sum of a second loss function calculated from correct information and from the second output probability distribution, and a cross entropy between the first output probability distribution and the second output probability distribution, and updates the parameter of the second model so as to reduce the weighted sum.</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAjxzU9JzVHISU0sysvMS1dISS3LTE7VUchNLcnIT1FIzEtRKEpNzi9KAUnmpqZkluYqpOUXITTkpZYWJeYAqZLy_KJshVyQcTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5Fag-PjTY0NDAAohNnYyMiVEDAHk6OLk</recordid><startdate>20210803</startdate><enddate>20210803</enddate><creator>Nakamura, Takashi</creator><creator>Asami, Taichi</creator><creator>Masumura, Ryo</creator><creator>Masataki, Hirokazu</creator><scope>EVB</scope></search><sort><creationdate>20210803</creationdate><title>Model learning device, method and recording medium for learning neural network model</title><author>Nakamura, Takashi ; Asami, Taichi ; Masumura, Ryo ; Masataki, Hirokazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11081105B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>Nakamura, Takashi</creatorcontrib><creatorcontrib>Asami, Taichi</creatorcontrib><creatorcontrib>Masumura, Ryo</creatorcontrib><creatorcontrib>Masataki, Hirokazu</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nakamura, Takashi</au><au>Asami, Taichi</au><au>Masumura, Ryo</au><au>Masataki, Hirokazu</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Model learning device, method and recording medium for learning neural network model</title><date>2021-08-03</date><risdate>2021</risdate><abstract>A model learning device comprises: an initial value setting part that uses a parameter of a learned first model including a neural network to set a parameter of a second model including a neural network having a same network structure as the first model; a first output probability distribution calculating part that calculates a first output probability distribution including a distribution of an output probability of each unit on an output layer, using learning features and the first model; a second output probability distribution calculating part that calculates a second output probability distribution including a distribution of an output probability of each unit on the output layer, using learning features and the second model; and a modified model update part that obtains a weighted sum of a second loss function calculated from correct information and from the second output probability distribution, and a cross entropy between the first output probability distribution and the second output probability distribution, and updates the parameter of the second model so as to reduce the weighted sum.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11081105B2
source esp@cenet
subjects ACOUSTICS
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title Model learning device, method and recording medium for learning neural network model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A26%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Nakamura,%20Takashi&rft.date=2021-08-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11081105B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true