Model learning device, method and recording medium for learning neural network model
A model learning device comprises: an initial value setting part that uses a parameter of a learned first model including a neural network to set a parameter of a second model including a neural network having a same network structure as the first model; a first output probability distribution calcu...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Nakamura, Takashi Asami, Taichi Masumura, Ryo Masataki, Hirokazu |
description | A model learning device comprises: an initial value setting part that uses a parameter of a learned first model including a neural network to set a parameter of a second model including a neural network having a same network structure as the first model; a first output probability distribution calculating part that calculates a first output probability distribution including a distribution of an output probability of each unit on an output layer, using learning features and the first model; a second output probability distribution calculating part that calculates a second output probability distribution including a distribution of an output probability of each unit on the output layer, using learning features and the second model; and a modified model update part that obtains a weighted sum of a second loss function calculated from correct information and from the second output probability distribution, and a cross entropy between the first output probability distribution and the second output probability distribution, and updates the parameter of the second model so as to reduce the weighted sum. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11081105B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11081105B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11081105B23</originalsourceid><addsrcrecordid>eNrjZAjxzU9JzVHISU0sysvMS1dISS3LTE7VUchNLcnIT1FIzEtRKEpNzi9KAUnmpqZkluYqpOUXITTkpZYWJeYAqZLy_KJshVyQcTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5Fag-PjTY0NDAAohNnYyMiVEDAHk6OLk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Model learning device, method and recording medium for learning neural network model</title><source>esp@cenet</source><creator>Nakamura, Takashi ; Asami, Taichi ; Masumura, Ryo ; Masataki, Hirokazu</creator><creatorcontrib>Nakamura, Takashi ; Asami, Taichi ; Masumura, Ryo ; Masataki, Hirokazu</creatorcontrib><description>A model learning device comprises: an initial value setting part that uses a parameter of a learned first model including a neural network to set a parameter of a second model including a neural network having a same network structure as the first model; a first output probability distribution calculating part that calculates a first output probability distribution including a distribution of an output probability of each unit on an output layer, using learning features and the first model; a second output probability distribution calculating part that calculates a second output probability distribution including a distribution of an output probability of each unit on the output layer, using learning features and the second model; and a modified model update part that obtains a weighted sum of a second loss function calculated from correct information and from the second output probability distribution, and a cross entropy between the first output probability distribution and the second output probability distribution, and updates the parameter of the second model so as to reduce the weighted sum.</description><language>eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210803&DB=EPODOC&CC=US&NR=11081105B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210803&DB=EPODOC&CC=US&NR=11081105B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Nakamura, Takashi</creatorcontrib><creatorcontrib>Asami, Taichi</creatorcontrib><creatorcontrib>Masumura, Ryo</creatorcontrib><creatorcontrib>Masataki, Hirokazu</creatorcontrib><title>Model learning device, method and recording medium for learning neural network model</title><description>A model learning device comprises: an initial value setting part that uses a parameter of a learned first model including a neural network to set a parameter of a second model including a neural network having a same network structure as the first model; a first output probability distribution calculating part that calculates a first output probability distribution including a distribution of an output probability of each unit on an output layer, using learning features and the first model; a second output probability distribution calculating part that calculates a second output probability distribution including a distribution of an output probability of each unit on the output layer, using learning features and the second model; and a modified model update part that obtains a weighted sum of a second loss function calculated from correct information and from the second output probability distribution, and a cross entropy between the first output probability distribution and the second output probability distribution, and updates the parameter of the second model so as to reduce the weighted sum.</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAjxzU9JzVHISU0sysvMS1dISS3LTE7VUchNLcnIT1FIzEtRKEpNzi9KAUnmpqZkluYqpOUXITTkpZYWJeYAqZLy_KJshVyQcTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5Fag-PjTY0NDAAohNnYyMiVEDAHk6OLk</recordid><startdate>20210803</startdate><enddate>20210803</enddate><creator>Nakamura, Takashi</creator><creator>Asami, Taichi</creator><creator>Masumura, Ryo</creator><creator>Masataki, Hirokazu</creator><scope>EVB</scope></search><sort><creationdate>20210803</creationdate><title>Model learning device, method and recording medium for learning neural network model</title><author>Nakamura, Takashi ; Asami, Taichi ; Masumura, Ryo ; Masataki, Hirokazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11081105B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>Nakamura, Takashi</creatorcontrib><creatorcontrib>Asami, Taichi</creatorcontrib><creatorcontrib>Masumura, Ryo</creatorcontrib><creatorcontrib>Masataki, Hirokazu</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nakamura, Takashi</au><au>Asami, Taichi</au><au>Masumura, Ryo</au><au>Masataki, Hirokazu</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Model learning device, method and recording medium for learning neural network model</title><date>2021-08-03</date><risdate>2021</risdate><abstract>A model learning device comprises: an initial value setting part that uses a parameter of a learned first model including a neural network to set a parameter of a second model including a neural network having a same network structure as the first model; a first output probability distribution calculating part that calculates a first output probability distribution including a distribution of an output probability of each unit on an output layer, using learning features and the first model; a second output probability distribution calculating part that calculates a second output probability distribution including a distribution of an output probability of each unit on the output layer, using learning features and the second model; and a modified model update part that obtains a weighted sum of a second loss function calculated from correct information and from the second output probability distribution, and a cross entropy between the first output probability distribution and the second output probability distribution, and updates the parameter of the second model so as to reduce the weighted sum.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11081105B2 |
source | esp@cenet |
subjects | ACOUSTICS CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING MUSICAL INSTRUMENTS PHYSICS SPEECH ANALYSIS OR SYNTHESIS SPEECH OR AUDIO CODING OR DECODING SPEECH OR VOICE PROCESSING SPEECH RECOGNITION |
title | Model learning device, method and recording medium for learning neural network model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A26%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Nakamura,%20Takashi&rft.date=2021-08-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11081105B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |