Machine learning with partial inversion

An example embodiment may involve a machine learning model representing relationships between a dependent variable and a plurality of n independent variables. The dependent variable may be a function of the n independent variables, where the n independent variables are measurable characteristics of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Thakur, Aniruddha, Govindarajan, Kannan, Jayaraman, Baskar
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Thakur, Aniruddha
Govindarajan, Kannan
Jayaraman, Baskar
description An example embodiment may involve a machine learning model representing relationships between a dependent variable and a plurality of n independent variables. The dependent variable may be a function of the n independent variables, where the n independent variables are measurable characteristics of computing devices, and where the dependent variable is a predicted behavior of the computing devices. The embodiment may also involve obtaining a target value of the dependent variable, and separating the n independent variables into n−1 independent variables with fixed values and a particular independent variable with an unfixed value. The embodiment may also involve performing a partial inversion of the function to produce a value of the particular independent variable such that, when the function is applied to the value of the particular independent variable and the n−1 independent variables with fixed values, the dependent variable is within a pre-defined range of the target value.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11080588B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11080588B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11080588B23</originalsourceid><addsrcrecordid>eNrjZFD3TUzOyMxLVchJTSzKy8xLVyjPLMlQKEgsKslMzFHIzCtLLSrOzM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhgYWBqYWFk5GxsSoAQC0AyhL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning with partial inversion</title><source>esp@cenet</source><creator>Thakur, Aniruddha ; Govindarajan, Kannan ; Jayaraman, Baskar</creator><creatorcontrib>Thakur, Aniruddha ; Govindarajan, Kannan ; Jayaraman, Baskar</creatorcontrib><description>An example embodiment may involve a machine learning model representing relationships between a dependent variable and a plurality of n independent variables. The dependent variable may be a function of the n independent variables, where the n independent variables are measurable characteristics of computing devices, and where the dependent variable is a predicted behavior of the computing devices. The embodiment may also involve obtaining a target value of the dependent variable, and separating the n independent variables into n−1 independent variables with fixed values and a particular independent variable with an unfixed value. The embodiment may also involve performing a partial inversion of the function to produce a value of the particular independent variable such that, when the function is applied to the value of the particular independent variable and the n−1 independent variables with fixed values, the dependent variable is within a pre-defined range of the target value.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210803&amp;DB=EPODOC&amp;CC=US&amp;NR=11080588B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210803&amp;DB=EPODOC&amp;CC=US&amp;NR=11080588B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Thakur, Aniruddha</creatorcontrib><creatorcontrib>Govindarajan, Kannan</creatorcontrib><creatorcontrib>Jayaraman, Baskar</creatorcontrib><title>Machine learning with partial inversion</title><description>An example embodiment may involve a machine learning model representing relationships between a dependent variable and a plurality of n independent variables. The dependent variable may be a function of the n independent variables, where the n independent variables are measurable characteristics of computing devices, and where the dependent variable is a predicted behavior of the computing devices. The embodiment may also involve obtaining a target value of the dependent variable, and separating the n independent variables into n−1 independent variables with fixed values and a particular independent variable with an unfixed value. The embodiment may also involve performing a partial inversion of the function to produce a value of the particular independent variable such that, when the function is applied to the value of the particular independent variable and the n−1 independent variables with fixed values, the dependent variable is within a pre-defined range of the target value.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFD3TUzOyMxLVchJTSzKy8xLVyjPLMlQKEgsKslMzFHIzCtLLSrOzM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhgYWBqYWFk5GxsSoAQC0AyhL</recordid><startdate>20210803</startdate><enddate>20210803</enddate><creator>Thakur, Aniruddha</creator><creator>Govindarajan, Kannan</creator><creator>Jayaraman, Baskar</creator><scope>EVB</scope></search><sort><creationdate>20210803</creationdate><title>Machine learning with partial inversion</title><author>Thakur, Aniruddha ; Govindarajan, Kannan ; Jayaraman, Baskar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11080588B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Thakur, Aniruddha</creatorcontrib><creatorcontrib>Govindarajan, Kannan</creatorcontrib><creatorcontrib>Jayaraman, Baskar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thakur, Aniruddha</au><au>Govindarajan, Kannan</au><au>Jayaraman, Baskar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning with partial inversion</title><date>2021-08-03</date><risdate>2021</risdate><abstract>An example embodiment may involve a machine learning model representing relationships between a dependent variable and a plurality of n independent variables. The dependent variable may be a function of the n independent variables, where the n independent variables are measurable characteristics of computing devices, and where the dependent variable is a predicted behavior of the computing devices. The embodiment may also involve obtaining a target value of the dependent variable, and separating the n independent variables into n−1 independent variables with fixed values and a particular independent variable with an unfixed value. The embodiment may also involve performing a partial inversion of the function to produce a value of the particular independent variable such that, when the function is applied to the value of the particular independent variable and the n−1 independent variables with fixed values, the dependent variable is within a pre-defined range of the target value.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11080588B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Machine learning with partial inversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Thakur,%20Aniruddha&rft.date=2021-08-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11080588B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true