Machine learning with partial inversion
An example embodiment may involve a machine learning model representing relationships between a dependent variable and a plurality of n independent variables. The dependent variable may be a function of the n independent variables, where the n independent variables are measurable characteristics of...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An example embodiment may involve a machine learning model representing relationships between a dependent variable and a plurality of n independent variables. The dependent variable may be a function of the n independent variables, where the n independent variables are measurable characteristics of computing devices, and where the dependent variable is a predicted behavior of the computing devices. The embodiment may also involve obtaining a target value of the dependent variable, and separating the n independent variables into n−1 independent variables with fixed values and a particular independent variable with an unfixed value. The embodiment may also involve performing a partial inversion of the function to produce a value of the particular independent variable such that, when the function is applied to the value of the particular independent variable and the n−1 independent variables with fixed values, the dependent variable is within a pre-defined range of the target value. |
---|