Environment navigation using reinforcement learning

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Soyer, Hubert Josef, Sifre, Laurent, Pascanu, Razvan, Banino, Andrea, Ballard, Andrew James, Viola, Fabio, Mirowski, Piotr Wojciech, Kumaran, Sudarshan, Hadsell, Raia Thais, Goroshin, Rostislav, Kavukcuoglu, Koray, Denil, Misha Man Ray
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Soyer, Hubert Josef
Sifre, Laurent
Pascanu, Razvan
Banino, Andrea
Ballard, Andrew James
Viola, Fabio
Mirowski, Piotr Wojciech
Kumaran, Sudarshan
Hadsell, Raia Thais
Goroshin, Rostislav
Kavukcuoglu, Koray
Denil, Misha Man Ray
description Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a geometry-prediction neural network, an intermediate output generated by the action selection policy neural network to predict a value of a feature of a geometry of the environment when in the current state; and backpropagating a gradient of a geometry-based auxiliary loss into the action selection policy neural network to determine a geometry-based auxiliary update for current values of the network parameters.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11074481B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11074481B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11074481B23</originalsourceid><addsrcrecordid>eNrjZDB2zSvLLMrPy03NK1HISyzLTE8syczPUygtzsxLVyhKzcxLyy9KTgVL56QmFuUBhXkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSXxosKGhgbmJiYWhk5ExMWoAZgEtbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Environment navigation using reinforcement learning</title><source>esp@cenet</source><creator>Soyer, Hubert Josef ; Sifre, Laurent ; Pascanu, Razvan ; Banino, Andrea ; Ballard, Andrew James ; Viola, Fabio ; Mirowski, Piotr Wojciech ; Kumaran, Sudarshan ; Hadsell, Raia Thais ; Goroshin, Rostislav ; Kavukcuoglu, Koray ; Denil, Misha Man Ray</creator><creatorcontrib>Soyer, Hubert Josef ; Sifre, Laurent ; Pascanu, Razvan ; Banino, Andrea ; Ballard, Andrew James ; Viola, Fabio ; Mirowski, Piotr Wojciech ; Kumaran, Sudarshan ; Hadsell, Raia Thais ; Goroshin, Rostislav ; Kavukcuoglu, Koray ; Denil, Misha Man Ray</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a geometry-prediction neural network, an intermediate output generated by the action selection policy neural network to predict a value of a feature of a geometry of the environment when in the current state; and backpropagating a gradient of a geometry-based auxiliary loss into the action selection policy neural network to determine a geometry-based auxiliary update for current values of the network parameters.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210727&amp;DB=EPODOC&amp;CC=US&amp;NR=11074481B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210727&amp;DB=EPODOC&amp;CC=US&amp;NR=11074481B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Soyer, Hubert Josef</creatorcontrib><creatorcontrib>Sifre, Laurent</creatorcontrib><creatorcontrib>Pascanu, Razvan</creatorcontrib><creatorcontrib>Banino, Andrea</creatorcontrib><creatorcontrib>Ballard, Andrew James</creatorcontrib><creatorcontrib>Viola, Fabio</creatorcontrib><creatorcontrib>Mirowski, Piotr Wojciech</creatorcontrib><creatorcontrib>Kumaran, Sudarshan</creatorcontrib><creatorcontrib>Hadsell, Raia Thais</creatorcontrib><creatorcontrib>Goroshin, Rostislav</creatorcontrib><creatorcontrib>Kavukcuoglu, Koray</creatorcontrib><creatorcontrib>Denil, Misha Man Ray</creatorcontrib><title>Environment navigation using reinforcement learning</title><description>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a geometry-prediction neural network, an intermediate output generated by the action selection policy neural network to predict a value of a feature of a geometry of the environment when in the current state; and backpropagating a gradient of a geometry-based auxiliary loss into the action selection policy neural network to determine a geometry-based auxiliary update for current values of the network parameters.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB2zSvLLMrPy03NK1HISyzLTE8syczPUygtzsxLVyhKzcxLyy9KTgVL56QmFuUBhXkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSXxosKGhgbmJiYWhk5ExMWoAZgEtbg</recordid><startdate>20210727</startdate><enddate>20210727</enddate><creator>Soyer, Hubert Josef</creator><creator>Sifre, Laurent</creator><creator>Pascanu, Razvan</creator><creator>Banino, Andrea</creator><creator>Ballard, Andrew James</creator><creator>Viola, Fabio</creator><creator>Mirowski, Piotr Wojciech</creator><creator>Kumaran, Sudarshan</creator><creator>Hadsell, Raia Thais</creator><creator>Goroshin, Rostislav</creator><creator>Kavukcuoglu, Koray</creator><creator>Denil, Misha Man Ray</creator><scope>EVB</scope></search><sort><creationdate>20210727</creationdate><title>Environment navigation using reinforcement learning</title><author>Soyer, Hubert Josef ; Sifre, Laurent ; Pascanu, Razvan ; Banino, Andrea ; Ballard, Andrew James ; Viola, Fabio ; Mirowski, Piotr Wojciech ; Kumaran, Sudarshan ; Hadsell, Raia Thais ; Goroshin, Rostislav ; Kavukcuoglu, Koray ; Denil, Misha Man Ray</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11074481B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Soyer, Hubert Josef</creatorcontrib><creatorcontrib>Sifre, Laurent</creatorcontrib><creatorcontrib>Pascanu, Razvan</creatorcontrib><creatorcontrib>Banino, Andrea</creatorcontrib><creatorcontrib>Ballard, Andrew James</creatorcontrib><creatorcontrib>Viola, Fabio</creatorcontrib><creatorcontrib>Mirowski, Piotr Wojciech</creatorcontrib><creatorcontrib>Kumaran, Sudarshan</creatorcontrib><creatorcontrib>Hadsell, Raia Thais</creatorcontrib><creatorcontrib>Goroshin, Rostislav</creatorcontrib><creatorcontrib>Kavukcuoglu, Koray</creatorcontrib><creatorcontrib>Denil, Misha Man Ray</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Soyer, Hubert Josef</au><au>Sifre, Laurent</au><au>Pascanu, Razvan</au><au>Banino, Andrea</au><au>Ballard, Andrew James</au><au>Viola, Fabio</au><au>Mirowski, Piotr Wojciech</au><au>Kumaran, Sudarshan</au><au>Hadsell, Raia Thais</au><au>Goroshin, Rostislav</au><au>Kavukcuoglu, Koray</au><au>Denil, Misha Man Ray</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Environment navigation using reinforcement learning</title><date>2021-07-27</date><risdate>2021</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a geometry-prediction neural network, an intermediate output generated by the action selection policy neural network to predict a value of a feature of a geometry of the environment when in the current state; and backpropagating a gradient of a geometry-based auxiliary loss into the action selection policy neural network to determine a geometry-based auxiliary update for current values of the network parameters.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11074481B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Environment navigation using reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Soyer,%20Hubert%20Josef&rft.date=2021-07-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11074481B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true