Using different data sources for a predictive model
Techniques for using different data sources for a predictive model are described. According to various implementations, techniques described herein enable different data sets to be used to generate a predictive model, while minimizing the risk that individual data points of the data sets will be exp...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Laine, Kim Henry Martin Gilad-Bachrach, Ran Lauter, Kristin Estella Rindal, Peter Byerley Chase, Melissa E |
description | Techniques for using different data sources for a predictive model are described. According to various implementations, techniques described herein enable different data sets to be used to generate a predictive model, while minimizing the risk that individual data points of the data sets will be exposed by the predictive model. This aids in protecting individual privacy (e.g., protecting personally identifying information for individuals), while enabling robust predictive models to be generated using data sets from a variety of different sources. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11062215B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11062215B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11062215B23</originalsourceid><addsrcrecordid>eNrjZDAOLc7MS1dIyUxLSy1KzStRSEksSVQozi8tSk4tVkjLL1JIVCgoSk3JTC7JLEtVyM1PSc3hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhgZmRkaGpk5GxsSoAQDs6CxV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Using different data sources for a predictive model</title><source>esp@cenet</source><creator>Laine, Kim Henry Martin ; Gilad-Bachrach, Ran ; Lauter, Kristin Estella ; Rindal, Peter Byerley ; Chase, Melissa E</creator><creatorcontrib>Laine, Kim Henry Martin ; Gilad-Bachrach, Ran ; Lauter, Kristin Estella ; Rindal, Peter Byerley ; Chase, Melissa E</creatorcontrib><description>Techniques for using different data sources for a predictive model are described. According to various implementations, techniques described herein enable different data sets to be used to generate a predictive model, while minimizing the risk that individual data points of the data sets will be exposed by the predictive model. This aids in protecting individual privacy (e.g., protecting personally identifying information for individuals), while enabling robust predictive models to be generated using data sets from a variety of different sources.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210713&DB=EPODOC&CC=US&NR=11062215B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210713&DB=EPODOC&CC=US&NR=11062215B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Laine, Kim Henry Martin</creatorcontrib><creatorcontrib>Gilad-Bachrach, Ran</creatorcontrib><creatorcontrib>Lauter, Kristin Estella</creatorcontrib><creatorcontrib>Rindal, Peter Byerley</creatorcontrib><creatorcontrib>Chase, Melissa E</creatorcontrib><title>Using different data sources for a predictive model</title><description>Techniques for using different data sources for a predictive model are described. According to various implementations, techniques described herein enable different data sets to be used to generate a predictive model, while minimizing the risk that individual data points of the data sets will be exposed by the predictive model. This aids in protecting individual privacy (e.g., protecting personally identifying information for individuals), while enabling robust predictive models to be generated using data sets from a variety of different sources.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAOLc7MS1dIyUxLSy1KzStRSEksSVQozi8tSk4tVkjLL1JIVCgoSk3JTC7JLEtVyM1PSc3hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhgZmRkaGpk5GxsSoAQDs6CxV</recordid><startdate>20210713</startdate><enddate>20210713</enddate><creator>Laine, Kim Henry Martin</creator><creator>Gilad-Bachrach, Ran</creator><creator>Lauter, Kristin Estella</creator><creator>Rindal, Peter Byerley</creator><creator>Chase, Melissa E</creator><scope>EVB</scope></search><sort><creationdate>20210713</creationdate><title>Using different data sources for a predictive model</title><author>Laine, Kim Henry Martin ; Gilad-Bachrach, Ran ; Lauter, Kristin Estella ; Rindal, Peter Byerley ; Chase, Melissa E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11062215B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Laine, Kim Henry Martin</creatorcontrib><creatorcontrib>Gilad-Bachrach, Ran</creatorcontrib><creatorcontrib>Lauter, Kristin Estella</creatorcontrib><creatorcontrib>Rindal, Peter Byerley</creatorcontrib><creatorcontrib>Chase, Melissa E</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Laine, Kim Henry Martin</au><au>Gilad-Bachrach, Ran</au><au>Lauter, Kristin Estella</au><au>Rindal, Peter Byerley</au><au>Chase, Melissa E</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Using different data sources for a predictive model</title><date>2021-07-13</date><risdate>2021</risdate><abstract>Techniques for using different data sources for a predictive model are described. According to various implementations, techniques described herein enable different data sets to be used to generate a predictive model, while minimizing the risk that individual data points of the data sets will be exposed by the predictive model. This aids in protecting individual privacy (e.g., protecting personally identifying information for individuals), while enabling robust predictive models to be generated using data sets from a variety of different sources.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11062215B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | Using different data sources for a predictive model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Laine,%20Kim%20Henry%20Martin&rft.date=2021-07-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11062215B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |