Using different data sources for a predictive model

Techniques for using different data sources for a predictive model are described. According to various implementations, techniques described herein enable different data sets to be used to generate a predictive model, while minimizing the risk that individual data points of the data sets will be exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Laine, Kim Henry Martin, Gilad-Bachrach, Ran, Lauter, Kristin Estella, Rindal, Peter Byerley, Chase, Melissa E
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Laine, Kim Henry Martin
Gilad-Bachrach, Ran
Lauter, Kristin Estella
Rindal, Peter Byerley
Chase, Melissa E
description Techniques for using different data sources for a predictive model are described. According to various implementations, techniques described herein enable different data sets to be used to generate a predictive model, while minimizing the risk that individual data points of the data sets will be exposed by the predictive model. This aids in protecting individual privacy (e.g., protecting personally identifying information for individuals), while enabling robust predictive models to be generated using data sets from a variety of different sources.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11062215B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11062215B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11062215B23</originalsourceid><addsrcrecordid>eNrjZDAOLc7MS1dIyUxLSy1KzStRSEksSVQozi8tSk4tVkjLL1JIVCgoSk3JTC7JLEtVyM1PSc3hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhgZmRkaGpk5GxsSoAQDs6CxV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Using different data sources for a predictive model</title><source>esp@cenet</source><creator>Laine, Kim Henry Martin ; Gilad-Bachrach, Ran ; Lauter, Kristin Estella ; Rindal, Peter Byerley ; Chase, Melissa E</creator><creatorcontrib>Laine, Kim Henry Martin ; Gilad-Bachrach, Ran ; Lauter, Kristin Estella ; Rindal, Peter Byerley ; Chase, Melissa E</creatorcontrib><description>Techniques for using different data sources for a predictive model are described. According to various implementations, techniques described herein enable different data sets to be used to generate a predictive model, while minimizing the risk that individual data points of the data sets will be exposed by the predictive model. This aids in protecting individual privacy (e.g., protecting personally identifying information for individuals), while enabling robust predictive models to be generated using data sets from a variety of different sources.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210713&amp;DB=EPODOC&amp;CC=US&amp;NR=11062215B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210713&amp;DB=EPODOC&amp;CC=US&amp;NR=11062215B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Laine, Kim Henry Martin</creatorcontrib><creatorcontrib>Gilad-Bachrach, Ran</creatorcontrib><creatorcontrib>Lauter, Kristin Estella</creatorcontrib><creatorcontrib>Rindal, Peter Byerley</creatorcontrib><creatorcontrib>Chase, Melissa E</creatorcontrib><title>Using different data sources for a predictive model</title><description>Techniques for using different data sources for a predictive model are described. According to various implementations, techniques described herein enable different data sets to be used to generate a predictive model, while minimizing the risk that individual data points of the data sets will be exposed by the predictive model. This aids in protecting individual privacy (e.g., protecting personally identifying information for individuals), while enabling robust predictive models to be generated using data sets from a variety of different sources.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAOLc7MS1dIyUxLSy1KzStRSEksSVQozi8tSk4tVkjLL1JIVCgoSk3JTC7JLEtVyM1PSc3hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhgZmRkaGpk5GxsSoAQDs6CxV</recordid><startdate>20210713</startdate><enddate>20210713</enddate><creator>Laine, Kim Henry Martin</creator><creator>Gilad-Bachrach, Ran</creator><creator>Lauter, Kristin Estella</creator><creator>Rindal, Peter Byerley</creator><creator>Chase, Melissa E</creator><scope>EVB</scope></search><sort><creationdate>20210713</creationdate><title>Using different data sources for a predictive model</title><author>Laine, Kim Henry Martin ; Gilad-Bachrach, Ran ; Lauter, Kristin Estella ; Rindal, Peter Byerley ; Chase, Melissa E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11062215B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Laine, Kim Henry Martin</creatorcontrib><creatorcontrib>Gilad-Bachrach, Ran</creatorcontrib><creatorcontrib>Lauter, Kristin Estella</creatorcontrib><creatorcontrib>Rindal, Peter Byerley</creatorcontrib><creatorcontrib>Chase, Melissa E</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Laine, Kim Henry Martin</au><au>Gilad-Bachrach, Ran</au><au>Lauter, Kristin Estella</au><au>Rindal, Peter Byerley</au><au>Chase, Melissa E</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Using different data sources for a predictive model</title><date>2021-07-13</date><risdate>2021</risdate><abstract>Techniques for using different data sources for a predictive model are described. According to various implementations, techniques described herein enable different data sets to be used to generate a predictive model, while minimizing the risk that individual data points of the data sets will be exposed by the predictive model. This aids in protecting individual privacy (e.g., protecting personally identifying information for individuals), while enabling robust predictive models to be generated using data sets from a variety of different sources.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11062215B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Using different data sources for a predictive model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Laine,%20Kim%20Henry%20Martin&rft.date=2021-07-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11062215B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true