Machine-learning-based visual-haptic feedback system for robotic surgical platforms
Embodiments described herein provide various examples of a visual-haptic feedback system for generating a haptic feedback signal based on captured endoscopy images. In one aspect, the process for generating the haptic feedback signal includes the steps of: receiving an endoscopic video captured for...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Miller, Denise Ann Venkataraman, Jagadish |
description | Embodiments described herein provide various examples of a visual-haptic feedback system for generating a haptic feedback signal based on captured endoscopy images. In one aspect, the process for generating the haptic feedback signal includes the steps of: receiving an endoscopic video captured for a surgical procedure performed on a robotic surgical system; detecting a surgical task in the endoscopic video involving a given type of surgical tool-tissue interaction; selecting, a machine learning model constructed for analyzing the given type of surgical tool-tissue interaction; for a video image associated with the detected surgical task depicting the given type of surgical tool-tissue interaction, applying the selected machine learning model to the video image to predict a strength level of the depicted surgical tool-tissue interaction; and then providing the predicted strength level to a surgeon performing the surgical task as a haptic feedback signal for the given type of surgical tool-tissue interaction. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11058505B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11058505B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11058505B23</originalsourceid><addsrcrecordid>eNqNyjEKwjAUgOEsDqLe4XmAQKsEnCuKi1N1Li_pSxtMk5CXCt5eBQ_g9A_fvxTtFc3oAklPmIMLg9TI1MPT8YxejpiKM2CJeo3mAfziQhPYmCFHHb_Gcx6cQQ_JY_nAxGuxsOiZNr-uxPZ8uh0vklLsiBMaClS6e1vXlTqoSjW7_T_PG456OQ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine-learning-based visual-haptic feedback system for robotic surgical platforms</title><source>esp@cenet</source><creator>Miller, Denise Ann ; Venkataraman, Jagadish</creator><creatorcontrib>Miller, Denise Ann ; Venkataraman, Jagadish</creatorcontrib><description>Embodiments described herein provide various examples of a visual-haptic feedback system for generating a haptic feedback signal based on captured endoscopy images. In one aspect, the process for generating the haptic feedback signal includes the steps of: receiving an endoscopic video captured for a surgical procedure performed on a robotic surgical system; detecting a surgical task in the endoscopic video involving a given type of surgical tool-tissue interaction; selecting, a machine learning model constructed for analyzing the given type of surgical tool-tissue interaction; for a video image associated with the detected surgical task depicting the given type of surgical tool-tissue interaction, applying the selected machine learning model to the video image to predict a strength level of the depicted surgical tool-tissue interaction; and then providing the predicted strength level to a surgeon performing the surgical task as a haptic feedback signal for the given type of surgical tool-tissue interaction.</description><language>eng</language><subject>DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; SURGERY</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210713&DB=EPODOC&CC=US&NR=11058505B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210713&DB=EPODOC&CC=US&NR=11058505B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Miller, Denise Ann</creatorcontrib><creatorcontrib>Venkataraman, Jagadish</creatorcontrib><title>Machine-learning-based visual-haptic feedback system for robotic surgical platforms</title><description>Embodiments described herein provide various examples of a visual-haptic feedback system for generating a haptic feedback signal based on captured endoscopy images. In one aspect, the process for generating the haptic feedback signal includes the steps of: receiving an endoscopic video captured for a surgical procedure performed on a robotic surgical system; detecting a surgical task in the endoscopic video involving a given type of surgical tool-tissue interaction; selecting, a machine learning model constructed for analyzing the given type of surgical tool-tissue interaction; for a video image associated with the detected surgical task depicting the given type of surgical tool-tissue interaction, applying the selected machine learning model to the video image to predict a strength level of the depicted surgical tool-tissue interaction; and then providing the predicted strength level to a surgeon performing the surgical task as a haptic feedback signal for the given type of surgical tool-tissue interaction.</description><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwjAUgOEsDqLe4XmAQKsEnCuKi1N1Li_pSxtMk5CXCt5eBQ_g9A_fvxTtFc3oAklPmIMLg9TI1MPT8YxejpiKM2CJeo3mAfziQhPYmCFHHb_Gcx6cQQ_JY_nAxGuxsOiZNr-uxPZ8uh0vklLsiBMaClS6e1vXlTqoSjW7_T_PG456OQ0</recordid><startdate>20210713</startdate><enddate>20210713</enddate><creator>Miller, Denise Ann</creator><creator>Venkataraman, Jagadish</creator><scope>EVB</scope></search><sort><creationdate>20210713</creationdate><title>Machine-learning-based visual-haptic feedback system for robotic surgical platforms</title><author>Miller, Denise Ann ; Venkataraman, Jagadish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11058505B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>Miller, Denise Ann</creatorcontrib><creatorcontrib>Venkataraman, Jagadish</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Miller, Denise Ann</au><au>Venkataraman, Jagadish</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine-learning-based visual-haptic feedback system for robotic surgical platforms</title><date>2021-07-13</date><risdate>2021</risdate><abstract>Embodiments described herein provide various examples of a visual-haptic feedback system for generating a haptic feedback signal based on captured endoscopy images. In one aspect, the process for generating the haptic feedback signal includes the steps of: receiving an endoscopic video captured for a surgical procedure performed on a robotic surgical system; detecting a surgical task in the endoscopic video involving a given type of surgical tool-tissue interaction; selecting, a machine learning model constructed for analyzing the given type of surgical tool-tissue interaction; for a video image associated with the detected surgical task depicting the given type of surgical tool-tissue interaction, applying the selected machine learning model to the video image to predict a strength level of the depicted surgical tool-tissue interaction; and then providing the predicted strength level to a surgeon performing the surgical task as a haptic feedback signal for the given type of surgical tool-tissue interaction.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11058505B2 |
source | esp@cenet |
subjects | DIAGNOSIS HUMAN NECESSITIES HYGIENE IDENTIFICATION MEDICAL OR VETERINARY SCIENCE SURGERY |
title | Machine-learning-based visual-haptic feedback system for robotic surgical platforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Miller,%20Denise%20Ann&rft.date=2021-07-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11058505B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |