Insufficient funds predictor

Certain aspects of the present disclosure provide techniques for improving a prediction of whether a non-sufficient funds fee will be incurred by a user utilizing machine learning techniques. For example, a predictive model may be trained using machine learning techniques based on historical data an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hayman, Liron, Mishraky, Elhanan, Mintz, Ido
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Hayman, Liron
Mishraky, Elhanan
Mintz, Ido
description Certain aspects of the present disclosure provide techniques for improving a prediction of whether a non-sufficient funds fee will be incurred by a user utilizing machine learning techniques. For example, a predictive model may be trained using machine learning techniques based on historical data and derived data for a plurality of users. The predictive model may then be used to predict a probability of a particular user incurring an insufficient funds fee. The probability of the particular user may be used to generate an alert and suggestion to be presented to the particular user to avoid incurring the insufficient funds fee.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11042930B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11042930B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11042930B13</originalsourceid><addsrcrecordid>eNrjZJDxzCsuTUvLTM5MzStRSCvNSylWKChKTclMLskv4mFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoYGJkaWxgZOhsbEqAEAxm4kMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Insufficient funds predictor</title><source>esp@cenet</source><creator>Hayman, Liron ; Mishraky, Elhanan ; Mintz, Ido</creator><creatorcontrib>Hayman, Liron ; Mishraky, Elhanan ; Mintz, Ido</creatorcontrib><description>Certain aspects of the present disclosure provide techniques for improving a prediction of whether a non-sufficient funds fee will be incurred by a user utilizing machine learning techniques. For example, a predictive model may be trained using machine learning techniques based on historical data and derived data for a plurality of users. The predictive model may then be used to predict a probability of a particular user incurring an insufficient funds fee. The probability of the particular user may be used to generate an alert and suggestion to be presented to the particular user to avoid incurring the insufficient funds fee.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210622&amp;DB=EPODOC&amp;CC=US&amp;NR=11042930B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210622&amp;DB=EPODOC&amp;CC=US&amp;NR=11042930B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hayman, Liron</creatorcontrib><creatorcontrib>Mishraky, Elhanan</creatorcontrib><creatorcontrib>Mintz, Ido</creatorcontrib><title>Insufficient funds predictor</title><description>Certain aspects of the present disclosure provide techniques for improving a prediction of whether a non-sufficient funds fee will be incurred by a user utilizing machine learning techniques. For example, a predictive model may be trained using machine learning techniques based on historical data and derived data for a plurality of users. The predictive model may then be used to predict a probability of a particular user incurring an insufficient funds fee. The probability of the particular user may be used to generate an alert and suggestion to be presented to the particular user to avoid incurring the insufficient funds fee.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJDxzCsuTUvLTM5MzStRSCvNSylWKChKTclMLskv4mFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoYGJkaWxgZOhsbEqAEAxm4kMA</recordid><startdate>20210622</startdate><enddate>20210622</enddate><creator>Hayman, Liron</creator><creator>Mishraky, Elhanan</creator><creator>Mintz, Ido</creator><scope>EVB</scope></search><sort><creationdate>20210622</creationdate><title>Insufficient funds predictor</title><author>Hayman, Liron ; Mishraky, Elhanan ; Mintz, Ido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11042930B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Hayman, Liron</creatorcontrib><creatorcontrib>Mishraky, Elhanan</creatorcontrib><creatorcontrib>Mintz, Ido</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hayman, Liron</au><au>Mishraky, Elhanan</au><au>Mintz, Ido</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Insufficient funds predictor</title><date>2021-06-22</date><risdate>2021</risdate><abstract>Certain aspects of the present disclosure provide techniques for improving a prediction of whether a non-sufficient funds fee will be incurred by a user utilizing machine learning techniques. For example, a predictive model may be trained using machine learning techniques based on historical data and derived data for a plurality of users. The predictive model may then be used to predict a probability of a particular user incurring an insufficient funds fee. The probability of the particular user may be used to generate an alert and suggestion to be presented to the particular user to avoid incurring the insufficient funds fee.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11042930B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Insufficient funds predictor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A35%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Hayman,%20Liron&rft.date=2021-06-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11042930B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true