Augmenting neural networks with hierarchical external memory

Systems, methods, devices, and other techniques are disclosed for using an augmented neural network system to generate a sequence of outputs from a sequence of inputs. An augmented neural network system can include a controller neural network, a hierarchical external memory, and a memory access subs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Andrychowicz, Marcin, Kurach, Karol Piotr
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Andrychowicz, Marcin
Kurach, Karol Piotr
description Systems, methods, devices, and other techniques are disclosed for using an augmented neural network system to generate a sequence of outputs from a sequence of inputs. An augmented neural network system can include a controller neural network, a hierarchical external memory, and a memory access subsystem. The controller neural network receives a neural network input at each of a series of time steps processes the neural network input to generate a memory key for the time step. The external memory includes a set of memory nodes arranged as a binary tree. To provide an interface between the controller neural network and the external memory, the system includes a memory access subsystem that is configured to, for each of the series of time steps, perform one or more operations to generate a respective output for the time step. The capacity of the neural network system to account for long-range dependencies in input sequences may be extended. Also, memory access efficiency may be increased by structuring the external memory as a binary tree.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11010664B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11010664B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11010664B23</originalsourceid><addsrcrecordid>eNrjZLBxLE3PTc0rycxLV8hLLS1KzAFSJeX5RdnFCuWZJRkKGZmpRYlFyRmZyUCp1IqS1KI8ICM3NTe_qJKHgTUtMac4lRdKczMourmGOHvophbkx6cWFyQmpwINiw8NNjQ0MDQwMzNxMjImRg0AQ7Ywpw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Augmenting neural networks with hierarchical external memory</title><source>esp@cenet</source><creator>Andrychowicz, Marcin ; Kurach, Karol Piotr</creator><creatorcontrib>Andrychowicz, Marcin ; Kurach, Karol Piotr</creatorcontrib><description>Systems, methods, devices, and other techniques are disclosed for using an augmented neural network system to generate a sequence of outputs from a sequence of inputs. An augmented neural network system can include a controller neural network, a hierarchical external memory, and a memory access subsystem. The controller neural network receives a neural network input at each of a series of time steps processes the neural network input to generate a memory key for the time step. The external memory includes a set of memory nodes arranged as a binary tree. To provide an interface between the controller neural network and the external memory, the system includes a memory access subsystem that is configured to, for each of the series of time steps, perform one or more operations to generate a respective output for the time step. The capacity of the neural network system to account for long-range dependencies in input sequences may be extended. Also, memory access efficiency may be increased by structuring the external memory as a binary tree.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210518&amp;DB=EPODOC&amp;CC=US&amp;NR=11010664B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210518&amp;DB=EPODOC&amp;CC=US&amp;NR=11010664B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Andrychowicz, Marcin</creatorcontrib><creatorcontrib>Kurach, Karol Piotr</creatorcontrib><title>Augmenting neural networks with hierarchical external memory</title><description>Systems, methods, devices, and other techniques are disclosed for using an augmented neural network system to generate a sequence of outputs from a sequence of inputs. An augmented neural network system can include a controller neural network, a hierarchical external memory, and a memory access subsystem. The controller neural network receives a neural network input at each of a series of time steps processes the neural network input to generate a memory key for the time step. The external memory includes a set of memory nodes arranged as a binary tree. To provide an interface between the controller neural network and the external memory, the system includes a memory access subsystem that is configured to, for each of the series of time steps, perform one or more operations to generate a respective output for the time step. The capacity of the neural network system to account for long-range dependencies in input sequences may be extended. Also, memory access efficiency may be increased by structuring the external memory as a binary tree.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBxLE3PTc0rycxLV8hLLS1KzAFSJeX5RdnFCuWZJRkKGZmpRYlFyRmZyUCp1IqS1KI8ICM3NTe_qJKHgTUtMac4lRdKczMourmGOHvophbkx6cWFyQmpwINiw8NNjQ0MDQwMzNxMjImRg0AQ7Ywpw</recordid><startdate>20210518</startdate><enddate>20210518</enddate><creator>Andrychowicz, Marcin</creator><creator>Kurach, Karol Piotr</creator><scope>EVB</scope></search><sort><creationdate>20210518</creationdate><title>Augmenting neural networks with hierarchical external memory</title><author>Andrychowicz, Marcin ; Kurach, Karol Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11010664B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Andrychowicz, Marcin</creatorcontrib><creatorcontrib>Kurach, Karol Piotr</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Andrychowicz, Marcin</au><au>Kurach, Karol Piotr</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Augmenting neural networks with hierarchical external memory</title><date>2021-05-18</date><risdate>2021</risdate><abstract>Systems, methods, devices, and other techniques are disclosed for using an augmented neural network system to generate a sequence of outputs from a sequence of inputs. An augmented neural network system can include a controller neural network, a hierarchical external memory, and a memory access subsystem. The controller neural network receives a neural network input at each of a series of time steps processes the neural network input to generate a memory key for the time step. The external memory includes a set of memory nodes arranged as a binary tree. To provide an interface between the controller neural network and the external memory, the system includes a memory access subsystem that is configured to, for each of the series of time steps, perform one or more operations to generate a respective output for the time step. The capacity of the neural network system to account for long-range dependencies in input sequences may be extended. Also, memory access efficiency may be increased by structuring the external memory as a binary tree.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11010664B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Augmenting neural networks with hierarchical external memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Andrychowicz,%20Marcin&rft.date=2021-05-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11010664B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true