Surface treating apparatus
The film forming mechanism 110 ejects a continuous laminar liquid under pressure of about 0.01 MPa at a flow rate of 5 to 10 L/min. Such a liquid film prevents droplets reflected on a surface of an antiscattering member 60 from splashing and entering the adjacent treatment chamber. When a plate-like...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Utsumi, Masayuki Takeuchi, Masaharu |
description | The film forming mechanism 110 ejects a continuous laminar liquid under pressure of about 0.01 MPa at a flow rate of 5 to 10 L/min. Such a liquid film prevents droplets reflected on a surface of an antiscattering member 60 from splashing and entering the adjacent treatment chamber. When a plate-like work 10 is shaken to collide with the liquid film, the film flows down along the plate-like work 10 since the film formed by the film forming mechanism 110 is liquid. Thereby, a shake of the plate-like work 10 is converged. An amount of air flowing in toward a transport direction in each treatment chamber is reduced. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11001928B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11001928B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11001928B23</originalsourceid><addsrcrecordid>eNrjZJAKLi1KS0xOVSgpSk0sycxLV0gsKEgsSiwpLeZhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBUBdeakl8aHBhoYGBoaWRhZORsbEqAEAYkEjWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Surface treating apparatus</title><source>esp@cenet</source><creator>Utsumi, Masayuki ; Takeuchi, Masaharu</creator><creatorcontrib>Utsumi, Masayuki ; Takeuchi, Masaharu</creatorcontrib><description>The film forming mechanism 110 ejects a continuous laminar liquid under pressure of about 0.01 MPa at a flow rate of 5 to 10 L/min. Such a liquid film prevents droplets reflected on a surface of an antiscattering member 60 from splashing and entering the adjacent treatment chamber. When a plate-like work 10 is shaken to collide with the liquid film, the film flows down along the plate-like work 10 since the film formed by the film forming mechanism 110 is liquid. Thereby, a shake of the plate-like work 10 is converged. An amount of air flowing in toward a transport direction in each treatment chamber is reduced.</description><language>eng</language><subject>CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210511&DB=EPODOC&CC=US&NR=11001928B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210511&DB=EPODOC&CC=US&NR=11001928B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Utsumi, Masayuki</creatorcontrib><creatorcontrib>Takeuchi, Masaharu</creatorcontrib><title>Surface treating apparatus</title><description>The film forming mechanism 110 ejects a continuous laminar liquid under pressure of about 0.01 MPa at a flow rate of 5 to 10 L/min. Such a liquid film prevents droplets reflected on a surface of an antiscattering member 60 from splashing and entering the adjacent treatment chamber. When a plate-like work 10 is shaken to collide with the liquid film, the film flows down along the plate-like work 10 since the film formed by the film forming mechanism 110 is liquid. Thereby, a shake of the plate-like work 10 is converged. An amount of air flowing in toward a transport direction in each treatment chamber is reduced.</description><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJAKLi1KS0xOVSgpSk0sycxLV0gsKEgsSiwpLeZhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBUBdeakl8aHBhoYGBoaWRhZORsbEqAEAYkEjWQ</recordid><startdate>20210511</startdate><enddate>20210511</enddate><creator>Utsumi, Masayuki</creator><creator>Takeuchi, Masaharu</creator><scope>EVB</scope></search><sort><creationdate>20210511</creationdate><title>Surface treating apparatus</title><author>Utsumi, Masayuki ; Takeuchi, Masaharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11001928B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><toplevel>online_resources</toplevel><creatorcontrib>Utsumi, Masayuki</creatorcontrib><creatorcontrib>Takeuchi, Masaharu</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Utsumi, Masayuki</au><au>Takeuchi, Masaharu</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Surface treating apparatus</title><date>2021-05-11</date><risdate>2021</risdate><abstract>The film forming mechanism 110 ejects a continuous laminar liquid under pressure of about 0.01 MPa at a flow rate of 5 to 10 L/min. Such a liquid film prevents droplets reflected on a surface of an antiscattering member 60 from splashing and entering the adjacent treatment chamber. When a plate-like work 10 is shaken to collide with the liquid film, the film flows down along the plate-like work 10 since the film formed by the film forming mechanism 110 is liquid. Thereby, a shake of the plate-like work 10 is converged. An amount of air flowing in toward a transport direction in each treatment chamber is reduced.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11001928B2 |
source | esp@cenet |
subjects | CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL METALLURGY SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION |
title | Surface treating apparatus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Utsumi,%20Masayuki&rft.date=2021-05-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11001928B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |