Systems, methods, and devices for mechanical isolation or mechanical damping of microfabricated inertial sensors
MEMS-based sensors can experience undesirable signal frequencies caused by vibrations, shocks, and accelerations, among other phenomena. A microisolation system can isolate individual MEMS-based sensors from undesirable signal frequencies and shocks. An embodiment of a system for microisolation of a...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Kranz, Michael S Dean, Jr., Robert Neal Adams, Mark Lee Bottenfield, Brent Douglas English, Brian A Bond, III, Arthur Gernt Rudd, Carl |
description | MEMS-based sensors can experience undesirable signal frequencies caused by vibrations, shocks, and accelerations, among other phenomena. A microisolation system can isolate individual MEMS-based sensors from undesirable signal frequencies and shocks. An embodiment of a system for microisolation of a MEMS-based sensor can include an isolation platform connected to one or more folded springs. Another embodiment of a system for microisolation can include an isolation platform and/or a frame connected to a mesh damping mechanism. In at least one embodiment, a mesh damping mechanism can be a microfibrous metal mesh damper. In one or more embodiments, a system for microisolation can include an isolation platform connected to one or more L-shaped springs, and a thickness of the one or more L-shaped springs can be less than a thickness of the isolation platform. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10988375B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10988375B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10988375B13</originalsourceid><addsrcrecordid>eNqNijELwjAQRrs4iPofzl3BUsS6Kop7dS5ncmkPmlzIBcF_bwYXN6fv8b03r2L31kxeN-Apj2ILYLBg6cWGFJykIsyIgQ1OwCoTZpYAv79FHzkMIA48myQOn6mITBY4UMpcGqWgknRZzRxOSqvvLqr19XI_37YUpSeNaChQ7h9dvTu2bXPYn-rmn-YDXlhD0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Systems, methods, and devices for mechanical isolation or mechanical damping of microfabricated inertial sensors</title><source>esp@cenet</source><creator>Kranz, Michael S ; Dean, Jr., Robert Neal ; Adams, Mark Lee ; Bottenfield, Brent Douglas ; English, Brian A ; Bond, III, Arthur Gernt ; Rudd, Carl</creator><creatorcontrib>Kranz, Michael S ; Dean, Jr., Robert Neal ; Adams, Mark Lee ; Bottenfield, Brent Douglas ; English, Brian A ; Bond, III, Arthur Gernt ; Rudd, Carl</creatorcontrib><description>MEMS-based sensors can experience undesirable signal frequencies caused by vibrations, shocks, and accelerations, among other phenomena. A microisolation system can isolate individual MEMS-based sensors from undesirable signal frequencies and shocks. An embodiment of a system for microisolation of a MEMS-based sensor can include an isolation platform connected to one or more folded springs. Another embodiment of a system for microisolation can include an isolation platform and/or a frame connected to a mesh damping mechanism. In at least one embodiment, a mesh damping mechanism can be a microfibrous metal mesh damper. In one or more embodiments, a system for microisolation can include an isolation platform connected to one or more L-shaped springs, and a thickness of the one or more L-shaped springs can be less than a thickness of the isolation platform.</description><language>eng</language><subject>MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICALDEVICES ; MICROSTRUCTURAL TECHNOLOGY ; PERFORMING OPERATIONS ; TRANSPORTING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210427&DB=EPODOC&CC=US&NR=10988375B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210427&DB=EPODOC&CC=US&NR=10988375B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kranz, Michael S</creatorcontrib><creatorcontrib>Dean, Jr., Robert Neal</creatorcontrib><creatorcontrib>Adams, Mark Lee</creatorcontrib><creatorcontrib>Bottenfield, Brent Douglas</creatorcontrib><creatorcontrib>English, Brian A</creatorcontrib><creatorcontrib>Bond, III, Arthur Gernt</creatorcontrib><creatorcontrib>Rudd, Carl</creatorcontrib><title>Systems, methods, and devices for mechanical isolation or mechanical damping of microfabricated inertial sensors</title><description>MEMS-based sensors can experience undesirable signal frequencies caused by vibrations, shocks, and accelerations, among other phenomena. A microisolation system can isolate individual MEMS-based sensors from undesirable signal frequencies and shocks. An embodiment of a system for microisolation of a MEMS-based sensor can include an isolation platform connected to one or more folded springs. Another embodiment of a system for microisolation can include an isolation platform and/or a frame connected to a mesh damping mechanism. In at least one embodiment, a mesh damping mechanism can be a microfibrous metal mesh damper. In one or more embodiments, a system for microisolation can include an isolation platform connected to one or more L-shaped springs, and a thickness of the one or more L-shaped springs can be less than a thickness of the isolation platform.</description><subject>MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICALDEVICES</subject><subject>MICROSTRUCTURAL TECHNOLOGY</subject><subject>PERFORMING OPERATIONS</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijELwjAQRrs4iPofzl3BUsS6Kop7dS5ncmkPmlzIBcF_bwYXN6fv8b03r2L31kxeN-Apj2ILYLBg6cWGFJykIsyIgQ1OwCoTZpYAv79FHzkMIA48myQOn6mITBY4UMpcGqWgknRZzRxOSqvvLqr19XI_37YUpSeNaChQ7h9dvTu2bXPYn-rmn-YDXlhD0g</recordid><startdate>20210427</startdate><enddate>20210427</enddate><creator>Kranz, Michael S</creator><creator>Dean, Jr., Robert Neal</creator><creator>Adams, Mark Lee</creator><creator>Bottenfield, Brent Douglas</creator><creator>English, Brian A</creator><creator>Bond, III, Arthur Gernt</creator><creator>Rudd, Carl</creator><scope>EVB</scope></search><sort><creationdate>20210427</creationdate><title>Systems, methods, and devices for mechanical isolation or mechanical damping of microfabricated inertial sensors</title><author>Kranz, Michael S ; Dean, Jr., Robert Neal ; Adams, Mark Lee ; Bottenfield, Brent Douglas ; English, Brian A ; Bond, III, Arthur Gernt ; Rudd, Carl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10988375B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICALDEVICES</topic><topic>MICROSTRUCTURAL TECHNOLOGY</topic><topic>PERFORMING OPERATIONS</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Kranz, Michael S</creatorcontrib><creatorcontrib>Dean, Jr., Robert Neal</creatorcontrib><creatorcontrib>Adams, Mark Lee</creatorcontrib><creatorcontrib>Bottenfield, Brent Douglas</creatorcontrib><creatorcontrib>English, Brian A</creatorcontrib><creatorcontrib>Bond, III, Arthur Gernt</creatorcontrib><creatorcontrib>Rudd, Carl</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kranz, Michael S</au><au>Dean, Jr., Robert Neal</au><au>Adams, Mark Lee</au><au>Bottenfield, Brent Douglas</au><au>English, Brian A</au><au>Bond, III, Arthur Gernt</au><au>Rudd, Carl</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Systems, methods, and devices for mechanical isolation or mechanical damping of microfabricated inertial sensors</title><date>2021-04-27</date><risdate>2021</risdate><abstract>MEMS-based sensors can experience undesirable signal frequencies caused by vibrations, shocks, and accelerations, among other phenomena. A microisolation system can isolate individual MEMS-based sensors from undesirable signal frequencies and shocks. An embodiment of a system for microisolation of a MEMS-based sensor can include an isolation platform connected to one or more folded springs. Another embodiment of a system for microisolation can include an isolation platform and/or a frame connected to a mesh damping mechanism. In at least one embodiment, a mesh damping mechanism can be a microfibrous metal mesh damper. In one or more embodiments, a system for microisolation can include an isolation platform connected to one or more L-shaped springs, and a thickness of the one or more L-shaped springs can be less than a thickness of the isolation platform.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10988375B1 |
source | esp@cenet |
subjects | MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICALDEVICES MICROSTRUCTURAL TECHNOLOGY PERFORMING OPERATIONS TRANSPORTING |
title | Systems, methods, and devices for mechanical isolation or mechanical damping of microfabricated inertial sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Kranz,%20Michael%20S&rft.date=2021-04-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10988375B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |