Recognition of biases in data and models

A method of training a predictive model to predict a likely field value for one or more user selected fields within an application. The method comprises providing a user interface for user selection of the one or more user selected fields within the application; analyzing a pre-existing, user provid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Runfeldt, Melissa, Nabar, Shubha, Asher, Sara Beth, Aerni, Sarah, Casey, Natalie
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Runfeldt, Melissa
Nabar, Shubha
Asher, Sara Beth
Aerni, Sarah
Casey, Natalie
description A method of training a predictive model to predict a likely field value for one or more user selected fields within an application. The method comprises providing a user interface for user selection of the one or more user selected fields within the application; analyzing a pre-existing, user provided data set of objects; training, based on the analysis, the predictive model; determining, for each user selected field based on the analysis, a confidence function for the predictive model that identifies the percentage of cases predicted correctly at different applied confidence levels, the percentage of cases predicted incorrectly at different applied confidence levels, and the percentage of cases in which the prediction model could not provide a prediction at different applied confidence levels; and providing a user interface for user review of the confidence functions for user selection of confidence threshold levels to be used with the predictive model.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10984283B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10984283B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10984283B23</originalsourceid><addsrcrecordid>eNrjZNAISk3OT8_LLMnMz1PIT1NIykwsTi1WyMxTSEksSVRIzEtRyM1PSc0p5mFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhgaWFiZGFsZORsbEqAEAoh4n_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Recognition of biases in data and models</title><source>esp@cenet</source><creator>Runfeldt, Melissa ; Nabar, Shubha ; Asher, Sara Beth ; Aerni, Sarah ; Casey, Natalie</creator><creatorcontrib>Runfeldt, Melissa ; Nabar, Shubha ; Asher, Sara Beth ; Aerni, Sarah ; Casey, Natalie</creatorcontrib><description>A method of training a predictive model to predict a likely field value for one or more user selected fields within an application. The method comprises providing a user interface for user selection of the one or more user selected fields within the application; analyzing a pre-existing, user provided data set of objects; training, based on the analysis, the predictive model; determining, for each user selected field based on the analysis, a confidence function for the predictive model that identifies the percentage of cases predicted correctly at different applied confidence levels, the percentage of cases predicted incorrectly at different applied confidence levels, and the percentage of cases in which the prediction model could not provide a prediction at different applied confidence levels; and providing a user interface for user review of the confidence functions for user selection of confidence threshold levels to be used with the predictive model.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210420&amp;DB=EPODOC&amp;CC=US&amp;NR=10984283B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210420&amp;DB=EPODOC&amp;CC=US&amp;NR=10984283B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Runfeldt, Melissa</creatorcontrib><creatorcontrib>Nabar, Shubha</creatorcontrib><creatorcontrib>Asher, Sara Beth</creatorcontrib><creatorcontrib>Aerni, Sarah</creatorcontrib><creatorcontrib>Casey, Natalie</creatorcontrib><title>Recognition of biases in data and models</title><description>A method of training a predictive model to predict a likely field value for one or more user selected fields within an application. The method comprises providing a user interface for user selection of the one or more user selected fields within the application; analyzing a pre-existing, user provided data set of objects; training, based on the analysis, the predictive model; determining, for each user selected field based on the analysis, a confidence function for the predictive model that identifies the percentage of cases predicted correctly at different applied confidence levels, the percentage of cases predicted incorrectly at different applied confidence levels, and the percentage of cases in which the prediction model could not provide a prediction at different applied confidence levels; and providing a user interface for user review of the confidence functions for user selection of confidence threshold levels to be used with the predictive model.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNAISk3OT8_LLMnMz1PIT1NIykwsTi1WyMxTSEksSVRIzEtRyM1PSc0p5mFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhgaWFiZGFsZORsbEqAEAoh4n_g</recordid><startdate>20210420</startdate><enddate>20210420</enddate><creator>Runfeldt, Melissa</creator><creator>Nabar, Shubha</creator><creator>Asher, Sara Beth</creator><creator>Aerni, Sarah</creator><creator>Casey, Natalie</creator><scope>EVB</scope></search><sort><creationdate>20210420</creationdate><title>Recognition of biases in data and models</title><author>Runfeldt, Melissa ; Nabar, Shubha ; Asher, Sara Beth ; Aerni, Sarah ; Casey, Natalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10984283B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Runfeldt, Melissa</creatorcontrib><creatorcontrib>Nabar, Shubha</creatorcontrib><creatorcontrib>Asher, Sara Beth</creatorcontrib><creatorcontrib>Aerni, Sarah</creatorcontrib><creatorcontrib>Casey, Natalie</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Runfeldt, Melissa</au><au>Nabar, Shubha</au><au>Asher, Sara Beth</au><au>Aerni, Sarah</au><au>Casey, Natalie</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Recognition of biases in data and models</title><date>2021-04-20</date><risdate>2021</risdate><abstract>A method of training a predictive model to predict a likely field value for one or more user selected fields within an application. The method comprises providing a user interface for user selection of the one or more user selected fields within the application; analyzing a pre-existing, user provided data set of objects; training, based on the analysis, the predictive model; determining, for each user selected field based on the analysis, a confidence function for the predictive model that identifies the percentage of cases predicted correctly at different applied confidence levels, the percentage of cases predicted incorrectly at different applied confidence levels, and the percentage of cases in which the prediction model could not provide a prediction at different applied confidence levels; and providing a user interface for user review of the confidence functions for user selection of confidence threshold levels to be used with the predictive model.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10984283B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Recognition of biases in data and models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Runfeldt,%20Melissa&rft.date=2021-04-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10984283B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true