Recognition of biases in data and models
A method of training a predictive model to predict a likely field value for one or more user selected fields within an application. The method comprises providing a user interface for user selection of the one or more user selected fields within the application; analyzing a pre-existing, user provid...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Runfeldt, Melissa Nabar, Shubha Asher, Sara Beth Aerni, Sarah Casey, Natalie |
description | A method of training a predictive model to predict a likely field value for one or more user selected fields within an application. The method comprises providing a user interface for user selection of the one or more user selected fields within the application; analyzing a pre-existing, user provided data set of objects; training, based on the analysis, the predictive model; determining, for each user selected field based on the analysis, a confidence function for the predictive model that identifies the percentage of cases predicted correctly at different applied confidence levels, the percentage of cases predicted incorrectly at different applied confidence levels, and the percentage of cases in which the prediction model could not provide a prediction at different applied confidence levels; and providing a user interface for user review of the confidence functions for user selection of confidence threshold levels to be used with the predictive model. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10984283B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10984283B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10984283B23</originalsourceid><addsrcrecordid>eNrjZNAISk3OT8_LLMnMz1PIT1NIykwsTi1WyMxTSEksSVRIzEtRyM1PSc0p5mFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhgaWFiZGFsZORsbEqAEAoh4n_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Recognition of biases in data and models</title><source>esp@cenet</source><creator>Runfeldt, Melissa ; Nabar, Shubha ; Asher, Sara Beth ; Aerni, Sarah ; Casey, Natalie</creator><creatorcontrib>Runfeldt, Melissa ; Nabar, Shubha ; Asher, Sara Beth ; Aerni, Sarah ; Casey, Natalie</creatorcontrib><description>A method of training a predictive model to predict a likely field value for one or more user selected fields within an application. The method comprises providing a user interface for user selection of the one or more user selected fields within the application; analyzing a pre-existing, user provided data set of objects; training, based on the analysis, the predictive model; determining, for each user selected field based on the analysis, a confidence function for the predictive model that identifies the percentage of cases predicted correctly at different applied confidence levels, the percentage of cases predicted incorrectly at different applied confidence levels, and the percentage of cases in which the prediction model could not provide a prediction at different applied confidence levels; and providing a user interface for user review of the confidence functions for user selection of confidence threshold levels to be used with the predictive model.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210420&DB=EPODOC&CC=US&NR=10984283B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210420&DB=EPODOC&CC=US&NR=10984283B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Runfeldt, Melissa</creatorcontrib><creatorcontrib>Nabar, Shubha</creatorcontrib><creatorcontrib>Asher, Sara Beth</creatorcontrib><creatorcontrib>Aerni, Sarah</creatorcontrib><creatorcontrib>Casey, Natalie</creatorcontrib><title>Recognition of biases in data and models</title><description>A method of training a predictive model to predict a likely field value for one or more user selected fields within an application. The method comprises providing a user interface for user selection of the one or more user selected fields within the application; analyzing a pre-existing, user provided data set of objects; training, based on the analysis, the predictive model; determining, for each user selected field based on the analysis, a confidence function for the predictive model that identifies the percentage of cases predicted correctly at different applied confidence levels, the percentage of cases predicted incorrectly at different applied confidence levels, and the percentage of cases in which the prediction model could not provide a prediction at different applied confidence levels; and providing a user interface for user review of the confidence functions for user selection of confidence threshold levels to be used with the predictive model.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNAISk3OT8_LLMnMz1PIT1NIykwsTi1WyMxTSEksSVRIzEtRyM1PSc0p5mFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhgaWFiZGFsZORsbEqAEAoh4n_g</recordid><startdate>20210420</startdate><enddate>20210420</enddate><creator>Runfeldt, Melissa</creator><creator>Nabar, Shubha</creator><creator>Asher, Sara Beth</creator><creator>Aerni, Sarah</creator><creator>Casey, Natalie</creator><scope>EVB</scope></search><sort><creationdate>20210420</creationdate><title>Recognition of biases in data and models</title><author>Runfeldt, Melissa ; Nabar, Shubha ; Asher, Sara Beth ; Aerni, Sarah ; Casey, Natalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10984283B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Runfeldt, Melissa</creatorcontrib><creatorcontrib>Nabar, Shubha</creatorcontrib><creatorcontrib>Asher, Sara Beth</creatorcontrib><creatorcontrib>Aerni, Sarah</creatorcontrib><creatorcontrib>Casey, Natalie</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Runfeldt, Melissa</au><au>Nabar, Shubha</au><au>Asher, Sara Beth</au><au>Aerni, Sarah</au><au>Casey, Natalie</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Recognition of biases in data and models</title><date>2021-04-20</date><risdate>2021</risdate><abstract>A method of training a predictive model to predict a likely field value for one or more user selected fields within an application. The method comprises providing a user interface for user selection of the one or more user selected fields within the application; analyzing a pre-existing, user provided data set of objects; training, based on the analysis, the predictive model; determining, for each user selected field based on the analysis, a confidence function for the predictive model that identifies the percentage of cases predicted correctly at different applied confidence levels, the percentage of cases predicted incorrectly at different applied confidence levels, and the percentage of cases in which the prediction model could not provide a prediction at different applied confidence levels; and providing a user interface for user review of the confidence functions for user selection of confidence threshold levels to be used with the predictive model.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10984283B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Recognition of biases in data and models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Runfeldt,%20Melissa&rft.date=2021-04-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10984283B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |