Artificial intelligence system with hierarchical machine learning for interaction session optimization
An intermediate result set is obtained from a first machine learning model whose input data set comprises values of a first set of properties associated with a session of operations. The intermediate result and a second set of properties associated with the session are provided as input to a second...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Bernet, Janick M Verma, Prashant Balakrishnan, Anoop |
description | An intermediate result set is obtained from a first machine learning model whose input data set comprises values of a first set of properties associated with a session of operations. The intermediate result and a second set of properties associated with the session are provided as input to a second machine learning model. A value of at least one property of the first set is determined before a value of at least one property of the second set is determined. A particular action recommendation, based at least in part on output generated by the second machine learning model, is implemented. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10977711B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10977711B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10977711B13</originalsourceid><addsrcrecordid>eNqNi0EKAjEMRbtxIeod4gEEi4viUkVxr66HUNKZQCcdmoDo6Z0RD-DqPT7vz106VOPEkTEDi1HO3JJEAn2pUQ9Ptg46poo1dhzHqsdRhCATVmFpIZX6vVaMxkVASXViGYx7fuM0Lt0sYVZa_bhw68v5frpuaCgN6YCRhKx53Px2H0Lw_uh3_zQfJSpBIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Artificial intelligence system with hierarchical machine learning for interaction session optimization</title><source>esp@cenet</source><creator>Bernet, Janick M ; Verma, Prashant ; Balakrishnan, Anoop</creator><creatorcontrib>Bernet, Janick M ; Verma, Prashant ; Balakrishnan, Anoop</creatorcontrib><description>An intermediate result set is obtained from a first machine learning model whose input data set comprises values of a first set of properties associated with a session of operations. The intermediate result and a second set of properties associated with the session are provided as input to a second machine learning model. A value of at least one property of the first set is determined before a value of at least one property of the second set is determined. A particular action recommendation, based at least in part on output generated by the second machine learning model, is implemented.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210413&DB=EPODOC&CC=US&NR=10977711B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210413&DB=EPODOC&CC=US&NR=10977711B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Bernet, Janick M</creatorcontrib><creatorcontrib>Verma, Prashant</creatorcontrib><creatorcontrib>Balakrishnan, Anoop</creatorcontrib><title>Artificial intelligence system with hierarchical machine learning for interaction session optimization</title><description>An intermediate result set is obtained from a first machine learning model whose input data set comprises values of a first set of properties associated with a session of operations. The intermediate result and a second set of properties associated with the session are provided as input to a second machine learning model. A value of at least one property of the first set is determined before a value of at least one property of the second set is determined. A particular action recommendation, based at least in part on output generated by the second machine learning model, is implemented.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKAjEMRbtxIeod4gEEi4viUkVxr66HUNKZQCcdmoDo6Z0RD-DqPT7vz106VOPEkTEDi1HO3JJEAn2pUQ9Ptg46poo1dhzHqsdRhCATVmFpIZX6vVaMxkVASXViGYx7fuM0Lt0sYVZa_bhw68v5frpuaCgN6YCRhKx53Px2H0Lw_uh3_zQfJSpBIw</recordid><startdate>20210413</startdate><enddate>20210413</enddate><creator>Bernet, Janick M</creator><creator>Verma, Prashant</creator><creator>Balakrishnan, Anoop</creator><scope>EVB</scope></search><sort><creationdate>20210413</creationdate><title>Artificial intelligence system with hierarchical machine learning for interaction session optimization</title><author>Bernet, Janick M ; Verma, Prashant ; Balakrishnan, Anoop</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10977711B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Bernet, Janick M</creatorcontrib><creatorcontrib>Verma, Prashant</creatorcontrib><creatorcontrib>Balakrishnan, Anoop</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bernet, Janick M</au><au>Verma, Prashant</au><au>Balakrishnan, Anoop</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Artificial intelligence system with hierarchical machine learning for interaction session optimization</title><date>2021-04-13</date><risdate>2021</risdate><abstract>An intermediate result set is obtained from a first machine learning model whose input data set comprises values of a first set of properties associated with a session of operations. The intermediate result and a second set of properties associated with the session are provided as input to a second machine learning model. A value of at least one property of the first set is determined before a value of at least one property of the second set is determined. A particular action recommendation, based at least in part on output generated by the second machine learning model, is implemented.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10977711B1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Artificial intelligence system with hierarchical machine learning for interaction session optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A35%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Bernet,%20Janick%20M&rft.date=2021-04-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10977711B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |