Determining a course of action based on aggregated data

Described herein is a system that transmits and combines local models, that individually comprise a set of local parameters computed via stochastic gradient descent (SGD), into a global model that comprises a set of global model parameters. The local models are computed in parallel at different geog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Musuvathi, Madanlal S, Maleki, Saeed, Ding, Yufei, Mytkowicz, Todd D
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Musuvathi, Madanlal S
Maleki, Saeed
Ding, Yufei
Mytkowicz, Todd D
description Described herein is a system that transmits and combines local models, that individually comprise a set of local parameters computed via stochastic gradient descent (SGD), into a global model that comprises a set of global model parameters. The local models are computed in parallel at different geographic locations along with symbolic representations. Network transmission of the local models and the symbolic representations, rather than transmission of the large training data subsets processed to compute the local models and symbolic representations, conserves resources and decreases latency. The global model can then be used as a model to determine a likelihood of a course of action being successful for an organization. For example, the course of action can be a purchase of a security or a business operation strategy. In another example, the course of action can be a type of medical treatment for a patient.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10922627B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10922627B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10922627B23</originalsourceid><addsrcrecordid>eNrjZDB3SS1JLcrNzMvMS1dIVEjOLy0qTlXIT1NITC7JzM9TSEosTk1RADIS09OLUtMTS4C8lMSSRB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicmpdaEh8abGhgaWRkZmTuZGRMjBoAmzstiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Determining a course of action based on aggregated data</title><source>esp@cenet</source><creator>Musuvathi, Madanlal S ; Maleki, Saeed ; Ding, Yufei ; Mytkowicz, Todd D</creator><creatorcontrib>Musuvathi, Madanlal S ; Maleki, Saeed ; Ding, Yufei ; Mytkowicz, Todd D</creatorcontrib><description>Described herein is a system that transmits and combines local models, that individually comprise a set of local parameters computed via stochastic gradient descent (SGD), into a global model that comprises a set of global model parameters. The local models are computed in parallel at different geographic locations along with symbolic representations. Network transmission of the local models and the symbolic representations, rather than transmission of the large training data subsets processed to compute the local models and symbolic representations, conserves resources and decreases latency. The global model can then be used as a model to determine a likelihood of a course of action being successful for an organization. For example, the course of action can be a purchase of a security or a business operation strategy. In another example, the course of action can be a type of medical treatment for a patient.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210216&amp;DB=EPODOC&amp;CC=US&amp;NR=10922627B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210216&amp;DB=EPODOC&amp;CC=US&amp;NR=10922627B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Musuvathi, Madanlal S</creatorcontrib><creatorcontrib>Maleki, Saeed</creatorcontrib><creatorcontrib>Ding, Yufei</creatorcontrib><creatorcontrib>Mytkowicz, Todd D</creatorcontrib><title>Determining a course of action based on aggregated data</title><description>Described herein is a system that transmits and combines local models, that individually comprise a set of local parameters computed via stochastic gradient descent (SGD), into a global model that comprises a set of global model parameters. The local models are computed in parallel at different geographic locations along with symbolic representations. Network transmission of the local models and the symbolic representations, rather than transmission of the large training data subsets processed to compute the local models and symbolic representations, conserves resources and decreases latency. The global model can then be used as a model to determine a likelihood of a course of action being successful for an organization. For example, the course of action can be a purchase of a security or a business operation strategy. In another example, the course of action can be a type of medical treatment for a patient.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB3SS1JLcrNzMvMS1dIVEjOLy0qTlXIT1NITC7JzM9TSEosTk1RADIS09OLUtMTS4C8lMSSRB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicmpdaEh8abGhgaWRkZmTuZGRMjBoAmzstiA</recordid><startdate>20210216</startdate><enddate>20210216</enddate><creator>Musuvathi, Madanlal S</creator><creator>Maleki, Saeed</creator><creator>Ding, Yufei</creator><creator>Mytkowicz, Todd D</creator><scope>EVB</scope></search><sort><creationdate>20210216</creationdate><title>Determining a course of action based on aggregated data</title><author>Musuvathi, Madanlal S ; Maleki, Saeed ; Ding, Yufei ; Mytkowicz, Todd D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10922627B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Musuvathi, Madanlal S</creatorcontrib><creatorcontrib>Maleki, Saeed</creatorcontrib><creatorcontrib>Ding, Yufei</creatorcontrib><creatorcontrib>Mytkowicz, Todd D</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Musuvathi, Madanlal S</au><au>Maleki, Saeed</au><au>Ding, Yufei</au><au>Mytkowicz, Todd D</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Determining a course of action based on aggregated data</title><date>2021-02-16</date><risdate>2021</risdate><abstract>Described herein is a system that transmits and combines local models, that individually comprise a set of local parameters computed via stochastic gradient descent (SGD), into a global model that comprises a set of global model parameters. The local models are computed in parallel at different geographic locations along with symbolic representations. Network transmission of the local models and the symbolic representations, rather than transmission of the large training data subsets processed to compute the local models and symbolic representations, conserves resources and decreases latency. The global model can then be used as a model to determine a likelihood of a course of action being successful for an organization. For example, the course of action can be a purchase of a security or a business operation strategy. In another example, the course of action can be a type of medical treatment for a patient.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10922627B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Determining a course of action based on aggregated data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Musuvathi,%20Madanlal%20S&rft.date=2021-02-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10922627B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true