Determining a course of action based on aggregated data
Described herein is a system that transmits and combines local models, that individually comprise a set of local parameters computed via stochastic gradient descent (SGD), into a global model that comprises a set of global model parameters. The local models are computed in parallel at different geog...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Musuvathi, Madanlal S Maleki, Saeed Ding, Yufei Mytkowicz, Todd D |
description | Described herein is a system that transmits and combines local models, that individually comprise a set of local parameters computed via stochastic gradient descent (SGD), into a global model that comprises a set of global model parameters. The local models are computed in parallel at different geographic locations along with symbolic representations. Network transmission of the local models and the symbolic representations, rather than transmission of the large training data subsets processed to compute the local models and symbolic representations, conserves resources and decreases latency. The global model can then be used as a model to determine a likelihood of a course of action being successful for an organization. For example, the course of action can be a purchase of a security or a business operation strategy. In another example, the course of action can be a type of medical treatment for a patient. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10922627B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10922627B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10922627B23</originalsourceid><addsrcrecordid>eNrjZDB3SS1JLcrNzMvMS1dIVEjOLy0qTlXIT1NITC7JzM9TSEosTk1RADIS09OLUtMTS4C8lMSSRB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicmpdaEh8abGhgaWRkZmTuZGRMjBoAmzstiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Determining a course of action based on aggregated data</title><source>esp@cenet</source><creator>Musuvathi, Madanlal S ; Maleki, Saeed ; Ding, Yufei ; Mytkowicz, Todd D</creator><creatorcontrib>Musuvathi, Madanlal S ; Maleki, Saeed ; Ding, Yufei ; Mytkowicz, Todd D</creatorcontrib><description>Described herein is a system that transmits and combines local models, that individually comprise a set of local parameters computed via stochastic gradient descent (SGD), into a global model that comprises a set of global model parameters. The local models are computed in parallel at different geographic locations along with symbolic representations. Network transmission of the local models and the symbolic representations, rather than transmission of the large training data subsets processed to compute the local models and symbolic representations, conserves resources and decreases latency. The global model can then be used as a model to determine a likelihood of a course of action being successful for an organization. For example, the course of action can be a purchase of a security or a business operation strategy. In another example, the course of action can be a type of medical treatment for a patient.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210216&DB=EPODOC&CC=US&NR=10922627B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210216&DB=EPODOC&CC=US&NR=10922627B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Musuvathi, Madanlal S</creatorcontrib><creatorcontrib>Maleki, Saeed</creatorcontrib><creatorcontrib>Ding, Yufei</creatorcontrib><creatorcontrib>Mytkowicz, Todd D</creatorcontrib><title>Determining a course of action based on aggregated data</title><description>Described herein is a system that transmits and combines local models, that individually comprise a set of local parameters computed via stochastic gradient descent (SGD), into a global model that comprises a set of global model parameters. The local models are computed in parallel at different geographic locations along with symbolic representations. Network transmission of the local models and the symbolic representations, rather than transmission of the large training data subsets processed to compute the local models and symbolic representations, conserves resources and decreases latency. The global model can then be used as a model to determine a likelihood of a course of action being successful for an organization. For example, the course of action can be a purchase of a security or a business operation strategy. In another example, the course of action can be a type of medical treatment for a patient.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB3SS1JLcrNzMvMS1dIVEjOLy0qTlXIT1NITC7JzM9TSEosTk1RADIS09OLUtMTS4C8lMSSRB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicmpdaEh8abGhgaWRkZmTuZGRMjBoAmzstiA</recordid><startdate>20210216</startdate><enddate>20210216</enddate><creator>Musuvathi, Madanlal S</creator><creator>Maleki, Saeed</creator><creator>Ding, Yufei</creator><creator>Mytkowicz, Todd D</creator><scope>EVB</scope></search><sort><creationdate>20210216</creationdate><title>Determining a course of action based on aggregated data</title><author>Musuvathi, Madanlal S ; Maleki, Saeed ; Ding, Yufei ; Mytkowicz, Todd D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10922627B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Musuvathi, Madanlal S</creatorcontrib><creatorcontrib>Maleki, Saeed</creatorcontrib><creatorcontrib>Ding, Yufei</creatorcontrib><creatorcontrib>Mytkowicz, Todd D</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Musuvathi, Madanlal S</au><au>Maleki, Saeed</au><au>Ding, Yufei</au><au>Mytkowicz, Todd D</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Determining a course of action based on aggregated data</title><date>2021-02-16</date><risdate>2021</risdate><abstract>Described herein is a system that transmits and combines local models, that individually comprise a set of local parameters computed via stochastic gradient descent (SGD), into a global model that comprises a set of global model parameters. The local models are computed in parallel at different geographic locations along with symbolic representations. Network transmission of the local models and the symbolic representations, rather than transmission of the large training data subsets processed to compute the local models and symbolic representations, conserves resources and decreases latency. The global model can then be used as a model to determine a likelihood of a course of action being successful for an organization. For example, the course of action can be a purchase of a security or a business operation strategy. In another example, the course of action can be a type of medical treatment for a patient.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10922627B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Determining a course of action based on aggregated data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Musuvathi,%20Madanlal%20S&rft.date=2021-02-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10922627B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |