Synchronization scheduler of distributed neural network training

Systems, apparatuses and methods may provide for technology that conducts a first timing measurement of a blockage timing of a first window of the training of the neural network. The blockage timing measures a time that processing is impeded at layers of the neural network during the first window of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Procter, Adam, Karkada, Deepthi, Arunachalam, Meenakshi, Saletore, Vikram
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Procter, Adam
Karkada, Deepthi
Arunachalam, Meenakshi
Saletore, Vikram
description Systems, apparatuses and methods may provide for technology that conducts a first timing measurement of a blockage timing of a first window of the training of the neural network. The blockage timing measures a time that processing is impeded at layers of the neural network during the first window of the training due to synchronization of one or more synchronizing parameters of the layers. Based upon the first timing measurement, the technology is to determine whether to modify a synchronization barrier policy to include a synchronization barrier to impede synchronization of one or more synchronizing parameters of one of the layers during a second window of the training. The technology is further to impede the synchronization of the one or more synchronizing parameters of the one of the layers during the second window if the synchronization barrier policy is modified to include the synchronization barrier.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10922610B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10922610B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10922610B23</originalsourceid><addsrcrecordid>eNrjZHAIrsxLzijKz8usSizJzM9TKE7OSE0pzUktUshPU0jJLC4pykwqLUlNUchLLS1KzAFSJeX5RdkKJUWJmXmZeek8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxORWoJT402NDA0sjIzNDAyciYGDUAVgMyew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Synchronization scheduler of distributed neural network training</title><source>esp@cenet</source><creator>Procter, Adam ; Karkada, Deepthi ; Arunachalam, Meenakshi ; Saletore, Vikram</creator><creatorcontrib>Procter, Adam ; Karkada, Deepthi ; Arunachalam, Meenakshi ; Saletore, Vikram</creatorcontrib><description>Systems, apparatuses and methods may provide for technology that conducts a first timing measurement of a blockage timing of a first window of the training of the neural network. The blockage timing measures a time that processing is impeded at layers of the neural network during the first window of the training due to synchronization of one or more synchronizing parameters of the layers. Based upon the first timing measurement, the technology is to determine whether to modify a synchronization barrier policy to include a synchronization barrier to impede synchronization of one or more synchronizing parameters of one of the layers during a second window of the training. The technology is further to impede the synchronization of the one or more synchronizing parameters of the one of the layers during the second window if the synchronization barrier policy is modified to include the synchronization barrier.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210216&amp;DB=EPODOC&amp;CC=US&amp;NR=10922610B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210216&amp;DB=EPODOC&amp;CC=US&amp;NR=10922610B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Procter, Adam</creatorcontrib><creatorcontrib>Karkada, Deepthi</creatorcontrib><creatorcontrib>Arunachalam, Meenakshi</creatorcontrib><creatorcontrib>Saletore, Vikram</creatorcontrib><title>Synchronization scheduler of distributed neural network training</title><description>Systems, apparatuses and methods may provide for technology that conducts a first timing measurement of a blockage timing of a first window of the training of the neural network. The blockage timing measures a time that processing is impeded at layers of the neural network during the first window of the training due to synchronization of one or more synchronizing parameters of the layers. Based upon the first timing measurement, the technology is to determine whether to modify a synchronization barrier policy to include a synchronization barrier to impede synchronization of one or more synchronizing parameters of one of the layers during a second window of the training. The technology is further to impede the synchronization of the one or more synchronizing parameters of the one of the layers during the second window if the synchronization barrier policy is modified to include the synchronization barrier.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAIrsxLzijKz8usSizJzM9TKE7OSE0pzUktUshPU0jJLC4pykwqLUlNUchLLS1KzAFSJeX5RdkKJUWJmXmZeek8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxORWoJT402NDA0sjIzNDAyciYGDUAVgMyew</recordid><startdate>20210216</startdate><enddate>20210216</enddate><creator>Procter, Adam</creator><creator>Karkada, Deepthi</creator><creator>Arunachalam, Meenakshi</creator><creator>Saletore, Vikram</creator><scope>EVB</scope></search><sort><creationdate>20210216</creationdate><title>Synchronization scheduler of distributed neural network training</title><author>Procter, Adam ; Karkada, Deepthi ; Arunachalam, Meenakshi ; Saletore, Vikram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10922610B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Procter, Adam</creatorcontrib><creatorcontrib>Karkada, Deepthi</creatorcontrib><creatorcontrib>Arunachalam, Meenakshi</creatorcontrib><creatorcontrib>Saletore, Vikram</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Procter, Adam</au><au>Karkada, Deepthi</au><au>Arunachalam, Meenakshi</au><au>Saletore, Vikram</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Synchronization scheduler of distributed neural network training</title><date>2021-02-16</date><risdate>2021</risdate><abstract>Systems, apparatuses and methods may provide for technology that conducts a first timing measurement of a blockage timing of a first window of the training of the neural network. The blockage timing measures a time that processing is impeded at layers of the neural network during the first window of the training due to synchronization of one or more synchronizing parameters of the layers. Based upon the first timing measurement, the technology is to determine whether to modify a synchronization barrier policy to include a synchronization barrier to impede synchronization of one or more synchronizing parameters of one of the layers during a second window of the training. The technology is further to impede the synchronization of the one or more synchronizing parameters of the one of the layers during the second window if the synchronization barrier policy is modified to include the synchronization barrier.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10922610B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Synchronization scheduler of distributed neural network training
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Procter,%20Adam&rft.date=2021-02-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10922610B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true