Real-time hardware-assisted GPU tuning using machine learning

Graphics processing unit (GPU) performance and power efficiency is improved using machine learning to tune operating parameters based on performance monitor values and application information. Performance monitor values are processed using machine learning techniques to generate model parameters, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sharma, Siddharth, Kilgariff, Emmett M, Dimitrov, Rouslan L, Idgunji, Sachin Satish, Kirkland, Dale L
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Sharma, Siddharth
Kilgariff, Emmett M
Dimitrov, Rouslan L
Idgunji, Sachin Satish
Kirkland, Dale L
description Graphics processing unit (GPU) performance and power efficiency is improved using machine learning to tune operating parameters based on performance monitor values and application information. Performance monitor values are processed using machine learning techniques to generate model parameters, which are used by a control unit within the GPU to provide real-time updates to the operating parameters. In one embodiment, a neural network processes the performance monitor values to generate operating parameters in real-time.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10909738B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10909738B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10909738B23</originalsourceid><addsrcrecordid>eNrjZLANSk3M0S3JzE1VyEgsSilPLErVTSwuziwuSU1RcA8IVSgpzcvMS1coLQaRuYnJGZl5qQo5qYlFIGEeBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnJqXWhIfGmxoYGlgaW5s4WRkTIwaAASyMCk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Real-time hardware-assisted GPU tuning using machine learning</title><source>esp@cenet</source><creator>Sharma, Siddharth ; Kilgariff, Emmett M ; Dimitrov, Rouslan L ; Idgunji, Sachin Satish ; Kirkland, Dale L</creator><creatorcontrib>Sharma, Siddharth ; Kilgariff, Emmett M ; Dimitrov, Rouslan L ; Idgunji, Sachin Satish ; Kirkland, Dale L</creatorcontrib><description>Graphics processing unit (GPU) performance and power efficiency is improved using machine learning to tune operating parameters based on performance monitor values and application information. Performance monitor values are processed using machine learning techniques to generate model parameters, which are used by a control unit within the GPU to provide real-time updates to the operating parameters. In one embodiment, a neural network processes the performance monitor values to generate operating parameters in real-time.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210202&amp;DB=EPODOC&amp;CC=US&amp;NR=10909738B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210202&amp;DB=EPODOC&amp;CC=US&amp;NR=10909738B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sharma, Siddharth</creatorcontrib><creatorcontrib>Kilgariff, Emmett M</creatorcontrib><creatorcontrib>Dimitrov, Rouslan L</creatorcontrib><creatorcontrib>Idgunji, Sachin Satish</creatorcontrib><creatorcontrib>Kirkland, Dale L</creatorcontrib><title>Real-time hardware-assisted GPU tuning using machine learning</title><description>Graphics processing unit (GPU) performance and power efficiency is improved using machine learning to tune operating parameters based on performance monitor values and application information. Performance monitor values are processed using machine learning techniques to generate model parameters, which are used by a control unit within the GPU to provide real-time updates to the operating parameters. In one embodiment, a neural network processes the performance monitor values to generate operating parameters in real-time.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLANSk3M0S3JzE1VyEgsSilPLErVTSwuziwuSU1RcA8IVSgpzcvMS1coLQaRuYnJGZl5qQo5qYlFIGEeBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnJqXWhIfGmxoYGlgaW5s4WRkTIwaAASyMCk</recordid><startdate>20210202</startdate><enddate>20210202</enddate><creator>Sharma, Siddharth</creator><creator>Kilgariff, Emmett M</creator><creator>Dimitrov, Rouslan L</creator><creator>Idgunji, Sachin Satish</creator><creator>Kirkland, Dale L</creator><scope>EVB</scope></search><sort><creationdate>20210202</creationdate><title>Real-time hardware-assisted GPU tuning using machine learning</title><author>Sharma, Siddharth ; Kilgariff, Emmett M ; Dimitrov, Rouslan L ; Idgunji, Sachin Satish ; Kirkland, Dale L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10909738B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Siddharth</creatorcontrib><creatorcontrib>Kilgariff, Emmett M</creatorcontrib><creatorcontrib>Dimitrov, Rouslan L</creatorcontrib><creatorcontrib>Idgunji, Sachin Satish</creatorcontrib><creatorcontrib>Kirkland, Dale L</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sharma, Siddharth</au><au>Kilgariff, Emmett M</au><au>Dimitrov, Rouslan L</au><au>Idgunji, Sachin Satish</au><au>Kirkland, Dale L</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Real-time hardware-assisted GPU tuning using machine learning</title><date>2021-02-02</date><risdate>2021</risdate><abstract>Graphics processing unit (GPU) performance and power efficiency is improved using machine learning to tune operating parameters based on performance monitor values and application information. Performance monitor values are processed using machine learning techniques to generate model parameters, which are used by a control unit within the GPU to provide real-time updates to the operating parameters. In one embodiment, a neural network processes the performance monitor values to generate operating parameters in real-time.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10909738B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Real-time hardware-assisted GPU tuning using machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Sharma,%20Siddharth&rft.date=2021-02-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10909738B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true