Real-time hardware-assisted GPU tuning using machine learning
Graphics processing unit (GPU) performance and power efficiency is improved using machine learning to tune operating parameters based on performance monitor values and application information. Performance monitor values are processed using machine learning techniques to generate model parameters, wh...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Sharma, Siddharth Kilgariff, Emmett M Dimitrov, Rouslan L Idgunji, Sachin Satish Kirkland, Dale L |
description | Graphics processing unit (GPU) performance and power efficiency is improved using machine learning to tune operating parameters based on performance monitor values and application information. Performance monitor values are processed using machine learning techniques to generate model parameters, which are used by a control unit within the GPU to provide real-time updates to the operating parameters. In one embodiment, a neural network processes the performance monitor values to generate operating parameters in real-time. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10909738B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10909738B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10909738B23</originalsourceid><addsrcrecordid>eNrjZLANSk3M0S3JzE1VyEgsSilPLErVTSwuziwuSU1RcA8IVSgpzcvMS1coLQaRuYnJGZl5qQo5qYlFIGEeBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnJqXWhIfGmxoYGlgaW5s4WRkTIwaAASyMCk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Real-time hardware-assisted GPU tuning using machine learning</title><source>esp@cenet</source><creator>Sharma, Siddharth ; Kilgariff, Emmett M ; Dimitrov, Rouslan L ; Idgunji, Sachin Satish ; Kirkland, Dale L</creator><creatorcontrib>Sharma, Siddharth ; Kilgariff, Emmett M ; Dimitrov, Rouslan L ; Idgunji, Sachin Satish ; Kirkland, Dale L</creatorcontrib><description>Graphics processing unit (GPU) performance and power efficiency is improved using machine learning to tune operating parameters based on performance monitor values and application information. Performance monitor values are processed using machine learning techniques to generate model parameters, which are used by a control unit within the GPU to provide real-time updates to the operating parameters. In one embodiment, a neural network processes the performance monitor values to generate operating parameters in real-time.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210202&DB=EPODOC&CC=US&NR=10909738B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210202&DB=EPODOC&CC=US&NR=10909738B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sharma, Siddharth</creatorcontrib><creatorcontrib>Kilgariff, Emmett M</creatorcontrib><creatorcontrib>Dimitrov, Rouslan L</creatorcontrib><creatorcontrib>Idgunji, Sachin Satish</creatorcontrib><creatorcontrib>Kirkland, Dale L</creatorcontrib><title>Real-time hardware-assisted GPU tuning using machine learning</title><description>Graphics processing unit (GPU) performance and power efficiency is improved using machine learning to tune operating parameters based on performance monitor values and application information. Performance monitor values are processed using machine learning techniques to generate model parameters, which are used by a control unit within the GPU to provide real-time updates to the operating parameters. In one embodiment, a neural network processes the performance monitor values to generate operating parameters in real-time.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLANSk3M0S3JzE1VyEgsSilPLErVTSwuziwuSU1RcA8IVSgpzcvMS1coLQaRuYnJGZl5qQo5qYlFIGEeBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnJqXWhIfGmxoYGlgaW5s4WRkTIwaAASyMCk</recordid><startdate>20210202</startdate><enddate>20210202</enddate><creator>Sharma, Siddharth</creator><creator>Kilgariff, Emmett M</creator><creator>Dimitrov, Rouslan L</creator><creator>Idgunji, Sachin Satish</creator><creator>Kirkland, Dale L</creator><scope>EVB</scope></search><sort><creationdate>20210202</creationdate><title>Real-time hardware-assisted GPU tuning using machine learning</title><author>Sharma, Siddharth ; Kilgariff, Emmett M ; Dimitrov, Rouslan L ; Idgunji, Sachin Satish ; Kirkland, Dale L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10909738B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Siddharth</creatorcontrib><creatorcontrib>Kilgariff, Emmett M</creatorcontrib><creatorcontrib>Dimitrov, Rouslan L</creatorcontrib><creatorcontrib>Idgunji, Sachin Satish</creatorcontrib><creatorcontrib>Kirkland, Dale L</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sharma, Siddharth</au><au>Kilgariff, Emmett M</au><au>Dimitrov, Rouslan L</au><au>Idgunji, Sachin Satish</au><au>Kirkland, Dale L</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Real-time hardware-assisted GPU tuning using machine learning</title><date>2021-02-02</date><risdate>2021</risdate><abstract>Graphics processing unit (GPU) performance and power efficiency is improved using machine learning to tune operating parameters based on performance monitor values and application information. Performance monitor values are processed using machine learning techniques to generate model parameters, which are used by a control unit within the GPU to provide real-time updates to the operating parameters. In one embodiment, a neural network processes the performance monitor values to generate operating parameters in real-time.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10909738B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Real-time hardware-assisted GPU tuning using machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Sharma,%20Siddharth&rft.date=2021-02-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10909738B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |