Training multiple neural networks with different accuracy
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a deep neural network. One of the methods includes generating a plurality of feature vectors that each model a different portion of an audio waveform, generating a first posterior probability...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Gruenstein, Alexander H |
description | Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a deep neural network. One of the methods includes generating a plurality of feature vectors that each model a different portion of an audio waveform, generating a first posterior probability vector for a first feature vector using a first neural network, determining whether one of the scores in the first posterior probability vector satisfies a first threshold value, generating a second posterior probability vector for each subsequent feature vector using a second neural network, wherein the second neural network is trained to identify the same key words and key phrases and includes more inner layer nodes than the first neural network, and determining whether one of the scores in the second posterior probability vector satisfies a second threshold value. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10909456B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10909456B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10909456B23</originalsourceid><addsrcrecordid>eNrjZLAMKUrMzMvMS1fILc0pySzISVXISy0tSswBUiXl-UXZxQrlmSUZCimZaWmpRal5JQqJyclA-eRKHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJwKNCI-NNjQwNLA0sTUzMnImBg1AJEUL4I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Training multiple neural networks with different accuracy</title><source>esp@cenet</source><creator>Gruenstein, Alexander H</creator><creatorcontrib>Gruenstein, Alexander H</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a deep neural network. One of the methods includes generating a plurality of feature vectors that each model a different portion of an audio waveform, generating a first posterior probability vector for a first feature vector using a first neural network, determining whether one of the scores in the first posterior probability vector satisfies a first threshold value, generating a second posterior probability vector for each subsequent feature vector using a second neural network, wherein the second neural network is trained to identify the same key words and key phrases and includes more inner layer nodes than the first neural network, and determining whether one of the scores in the second posterior probability vector satisfies a second threshold value.</description><language>eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210202&DB=EPODOC&CC=US&NR=10909456B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210202&DB=EPODOC&CC=US&NR=10909456B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Gruenstein, Alexander H</creatorcontrib><title>Training multiple neural networks with different accuracy</title><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a deep neural network. One of the methods includes generating a plurality of feature vectors that each model a different portion of an audio waveform, generating a first posterior probability vector for a first feature vector using a first neural network, determining whether one of the scores in the first posterior probability vector satisfies a first threshold value, generating a second posterior probability vector for each subsequent feature vector using a second neural network, wherein the second neural network is trained to identify the same key words and key phrases and includes more inner layer nodes than the first neural network, and determining whether one of the scores in the second posterior probability vector satisfies a second threshold value.</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAMKUrMzMvMS1fILc0pySzISVXISy0tSswBUiXl-UXZxQrlmSUZCimZaWmpRal5JQqJyclA-eRKHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJwKNCI-NNjQwNLA0sTUzMnImBg1AJEUL4I</recordid><startdate>20210202</startdate><enddate>20210202</enddate><creator>Gruenstein, Alexander H</creator><scope>EVB</scope></search><sort><creationdate>20210202</creationdate><title>Training multiple neural networks with different accuracy</title><author>Gruenstein, Alexander H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10909456B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>Gruenstein, Alexander H</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gruenstein, Alexander H</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Training multiple neural networks with different accuracy</title><date>2021-02-02</date><risdate>2021</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a deep neural network. One of the methods includes generating a plurality of feature vectors that each model a different portion of an audio waveform, generating a first posterior probability vector for a first feature vector using a first neural network, determining whether one of the scores in the first posterior probability vector satisfies a first threshold value, generating a second posterior probability vector for each subsequent feature vector using a second neural network, wherein the second neural network is trained to identify the same key words and key phrases and includes more inner layer nodes than the first neural network, and determining whether one of the scores in the second posterior probability vector satisfies a second threshold value.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10909456B2 |
source | esp@cenet |
subjects | ACOUSTICS CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING MUSICAL INSTRUMENTS PHYSICS SPEECH ANALYSIS OR SYNTHESIS SPEECH OR AUDIO CODING OR DECODING SPEECH OR VOICE PROCESSING SPEECH RECOGNITION |
title | Training multiple neural networks with different accuracy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Gruenstein,%20Alexander%20H&rft.date=2021-02-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10909456B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |