Synchronous reluctance machine
A synchronous reluctance machine includes a stator and a rotor spaced apart from the stator by an air gap. The rotor is rotatably mounted about an axis and has laminations arranged axially behind one another. Each lamination has an anisotropic magnetic structure formed by flux blocking sections and...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Zeichfüssl, Roland |
description | A synchronous reluctance machine includes a stator and a rotor spaced apart from the stator by an air gap. The rotor is rotatably mounted about an axis and has laminations arranged axially behind one another. Each lamination has an anisotropic magnetic structure formed by flux blocking sections and flux conducting sections, wherein the flux blocking sections and the flux conducting sections form poles of the rotor. The flux blocking sections form axial channels, wherein in at least some flux blocking sections permanent magnets are provided that do not completely occupy the respective flux blocking section and thus allow axial airflow in all flux blocking sections. The laminated core of the rotor is axially subdivided into at least two component laminated cores, with radial cooling gaps formed between the poles in the region of the q axis as viewed in circumferential direction and between the component laminated cores as viewed axially. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10903707B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10903707B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10903707B23</originalsourceid><addsrcrecordid>eNrjZJALrsxLzijKz8svLVYoSs0pTS5JzEtOVchNTM7IzEvlYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGBpYGxuYG5k5GxsSoAQAtWSUV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Synchronous reluctance machine</title><source>esp@cenet</source><creator>Zeichfüssl, Roland</creator><creatorcontrib>Zeichfüssl, Roland</creatorcontrib><description>A synchronous reluctance machine includes a stator and a rotor spaced apart from the stator by an air gap. The rotor is rotatably mounted about an axis and has laminations arranged axially behind one another. Each lamination has an anisotropic magnetic structure formed by flux blocking sections and flux conducting sections, wherein the flux blocking sections and the flux conducting sections form poles of the rotor. The flux blocking sections form axial channels, wherein in at least some flux blocking sections permanent magnets are provided that do not completely occupy the respective flux blocking section and thus allow axial airflow in all flux blocking sections. The laminated core of the rotor is axially subdivided into at least two component laminated cores, with radial cooling gaps formed between the poles in the region of the q axis as viewed in circumferential direction and between the component laminated cores as viewed axially.</description><language>eng</language><subject>BLASTING ; CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORSOR DYNAMO-ELECTRIC CONVERTERS ; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; DYNAMO-ELECTRIC MACHINES ; ELECTRICITY ; GENERATION ; HEATING ; LIGHTING ; MACHINES OR ENGINES FOR LIQUIDS ; MECHANICAL ENGINEERING ; OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR ; PRODUCING MECHANICAL POWER ; WEAPONS ; WIND MOTORS ; WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210126&DB=EPODOC&CC=US&NR=10903707B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210126&DB=EPODOC&CC=US&NR=10903707B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Zeichfüssl, Roland</creatorcontrib><title>Synchronous reluctance machine</title><description>A synchronous reluctance machine includes a stator and a rotor spaced apart from the stator by an air gap. The rotor is rotatably mounted about an axis and has laminations arranged axially behind one another. Each lamination has an anisotropic magnetic structure formed by flux blocking sections and flux conducting sections, wherein the flux blocking sections and the flux conducting sections form poles of the rotor. The flux blocking sections form axial channels, wherein in at least some flux blocking sections permanent magnets are provided that do not completely occupy the respective flux blocking section and thus allow axial airflow in all flux blocking sections. The laminated core of the rotor is axially subdivided into at least two component laminated cores, with radial cooling gaps formed between the poles in the region of the q axis as viewed in circumferential direction and between the component laminated cores as viewed axially.</description><subject>BLASTING</subject><subject>CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORSOR DYNAMO-ELECTRIC CONVERTERS</subject><subject>CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>DYNAMO-ELECTRIC MACHINES</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>HEATING</subject><subject>LIGHTING</subject><subject>MACHINES OR ENGINES FOR LIQUIDS</subject><subject>MECHANICAL ENGINEERING</subject><subject>OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR</subject><subject>PRODUCING MECHANICAL POWER</subject><subject>WEAPONS</subject><subject>WIND MOTORS</subject><subject>WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJALrsxLzijKz8svLVYoSs0pTS5JzEtOVchNTM7IzEvlYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGBpYGxuYG5k5GxsSoAQAtWSUV</recordid><startdate>20210126</startdate><enddate>20210126</enddate><creator>Zeichfüssl, Roland</creator><scope>EVB</scope></search><sort><creationdate>20210126</creationdate><title>Synchronous reluctance machine</title><author>Zeichfüssl, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10903707B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>BLASTING</topic><topic>CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORSOR DYNAMO-ELECTRIC CONVERTERS</topic><topic>CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>DYNAMO-ELECTRIC MACHINES</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>HEATING</topic><topic>LIGHTING</topic><topic>MACHINES OR ENGINES FOR LIQUIDS</topic><topic>MECHANICAL ENGINEERING</topic><topic>OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR</topic><topic>PRODUCING MECHANICAL POWER</topic><topic>WEAPONS</topic><topic>WIND MOTORS</topic><topic>WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS</topic><toplevel>online_resources</toplevel><creatorcontrib>Zeichfüssl, Roland</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeichfüssl, Roland</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Synchronous reluctance machine</title><date>2021-01-26</date><risdate>2021</risdate><abstract>A synchronous reluctance machine includes a stator and a rotor spaced apart from the stator by an air gap. The rotor is rotatably mounted about an axis and has laminations arranged axially behind one another. Each lamination has an anisotropic magnetic structure formed by flux blocking sections and flux conducting sections, wherein the flux blocking sections and the flux conducting sections form poles of the rotor. The flux blocking sections form axial channels, wherein in at least some flux blocking sections permanent magnets are provided that do not completely occupy the respective flux blocking section and thus allow axial airflow in all flux blocking sections. The laminated core of the rotor is axially subdivided into at least two component laminated cores, with radial cooling gaps formed between the poles in the region of the q axis as viewed in circumferential direction and between the component laminated cores as viewed axially.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10903707B2 |
source | esp@cenet |
subjects | BLASTING CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORSOR DYNAMO-ELECTRIC CONVERTERS CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS CONVERSION OR DISTRIBUTION OF ELECTRIC POWER DYNAMO-ELECTRIC MACHINES ELECTRICITY GENERATION HEATING LIGHTING MACHINES OR ENGINES FOR LIQUIDS MECHANICAL ENGINEERING OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR PRODUCING MECHANICAL POWER WEAPONS WIND MOTORS WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS |
title | Synchronous reluctance machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Zeichf%C3%BCssl,%20Roland&rft.date=2021-01-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10903707B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |