System for maintenance recommendation based on failure prediction

Example implementations described herein involve a system for maintenance recommendation based on data-driven failure prediction. The example implementations can involve estimating the probability of having a failure event in the near future given sensor measurements and events from the equipment, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ristovski, Kosta, Farahat, Ahmed Khairy, Gupta, Chetan
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Ristovski, Kosta
Farahat, Ahmed Khairy
Gupta, Chetan
description Example implementations described herein involve a system for maintenance recommendation based on data-driven failure prediction. The example implementations can involve estimating the probability of having a failure event in the near future given sensor measurements and events from the equipment, and then alerts the system user or maintenance staff if the probability of failure exceeds a certain threshold. The example implementations utilize historical failure cases along with the associated sensor measurements and events to learn a group of classification models that differentiate between failure and non-failure cases. In example implementations, the system then chooses the optimal model for failure prediction such that the overall cost of the maintenance process is minimized.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10901832B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10901832B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10901832B23</originalsourceid><addsrcrecordid>eNrjZHAMriwuSc1VSMsvUshNzMwrSc1LzEtOVShKTc7PzU3NS0ksyczPU0hKLE5NUQAy0hIzc0qLUhUKilJTMpNBcjwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDA0sDQwtjIyciYGDUAQSwyRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System for maintenance recommendation based on failure prediction</title><source>esp@cenet</source><creator>Ristovski, Kosta ; Farahat, Ahmed Khairy ; Gupta, Chetan</creator><creatorcontrib>Ristovski, Kosta ; Farahat, Ahmed Khairy ; Gupta, Chetan</creatorcontrib><description>Example implementations described herein involve a system for maintenance recommendation based on data-driven failure prediction. The example implementations can involve estimating the probability of having a failure event in the near future given sensor measurements and events from the equipment, and then alerts the system user or maintenance staff if the probability of failure exceeds a certain threshold. The example implementations utilize historical failure cases along with the associated sensor measurements and events to learn a group of classification models that differentiate between failure and non-failure cases. In example implementations, the system then chooses the optimal model for failure prediction such that the overall cost of the maintenance process is minimized.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210126&amp;DB=EPODOC&amp;CC=US&amp;NR=10901832B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76517</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210126&amp;DB=EPODOC&amp;CC=US&amp;NR=10901832B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ristovski, Kosta</creatorcontrib><creatorcontrib>Farahat, Ahmed Khairy</creatorcontrib><creatorcontrib>Gupta, Chetan</creatorcontrib><title>System for maintenance recommendation based on failure prediction</title><description>Example implementations described herein involve a system for maintenance recommendation based on data-driven failure prediction. The example implementations can involve estimating the probability of having a failure event in the near future given sensor measurements and events from the equipment, and then alerts the system user or maintenance staff if the probability of failure exceeds a certain threshold. The example implementations utilize historical failure cases along with the associated sensor measurements and events to learn a group of classification models that differentiate between failure and non-failure cases. In example implementations, the system then chooses the optimal model for failure prediction such that the overall cost of the maintenance process is minimized.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAMriwuSc1VSMsvUshNzMwrSc1LzEtOVShKTc7PzU3NS0ksyczPU0hKLE5NUQAy0hIzc0qLUhUKilJTMpNBcjwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDA0sDQwtjIyciYGDUAQSwyRQ</recordid><startdate>20210126</startdate><enddate>20210126</enddate><creator>Ristovski, Kosta</creator><creator>Farahat, Ahmed Khairy</creator><creator>Gupta, Chetan</creator><scope>EVB</scope></search><sort><creationdate>20210126</creationdate><title>System for maintenance recommendation based on failure prediction</title><author>Ristovski, Kosta ; Farahat, Ahmed Khairy ; Gupta, Chetan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10901832B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Ristovski, Kosta</creatorcontrib><creatorcontrib>Farahat, Ahmed Khairy</creatorcontrib><creatorcontrib>Gupta, Chetan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ristovski, Kosta</au><au>Farahat, Ahmed Khairy</au><au>Gupta, Chetan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System for maintenance recommendation based on failure prediction</title><date>2021-01-26</date><risdate>2021</risdate><abstract>Example implementations described herein involve a system for maintenance recommendation based on data-driven failure prediction. The example implementations can involve estimating the probability of having a failure event in the near future given sensor measurements and events from the equipment, and then alerts the system user or maintenance staff if the probability of failure exceeds a certain threshold. The example implementations utilize historical failure cases along with the associated sensor measurements and events to learn a group of classification models that differentiate between failure and non-failure cases. In example implementations, the system then chooses the optimal model for failure prediction such that the overall cost of the maintenance process is minimized.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10901832B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title System for maintenance recommendation based on failure prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Ristovski,%20Kosta&rft.date=2021-01-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10901832B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true