System for maintenance recommendation based on failure prediction
Example implementations described herein involve a system for maintenance recommendation based on data-driven failure prediction. The example implementations can involve estimating the probability of having a failure event in the near future given sensor measurements and events from the equipment, a...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Ristovski, Kosta Farahat, Ahmed Khairy Gupta, Chetan |
description | Example implementations described herein involve a system for maintenance recommendation based on data-driven failure prediction. The example implementations can involve estimating the probability of having a failure event in the near future given sensor measurements and events from the equipment, and then alerts the system user or maintenance staff if the probability of failure exceeds a certain threshold. The example implementations utilize historical failure cases along with the associated sensor measurements and events to learn a group of classification models that differentiate between failure and non-failure cases. In example implementations, the system then chooses the optimal model for failure prediction such that the overall cost of the maintenance process is minimized. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10901832B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10901832B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10901832B23</originalsourceid><addsrcrecordid>eNrjZHAMriwuSc1VSMsvUshNzMwrSc1LzEtOVShKTc7PzU3NS0ksyczPU0hKLE5NUQAy0hIzc0qLUhUKilJTMpNBcjwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDA0sDQwtjIyciYGDUAQSwyRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System for maintenance recommendation based on failure prediction</title><source>esp@cenet</source><creator>Ristovski, Kosta ; Farahat, Ahmed Khairy ; Gupta, Chetan</creator><creatorcontrib>Ristovski, Kosta ; Farahat, Ahmed Khairy ; Gupta, Chetan</creatorcontrib><description>Example implementations described herein involve a system for maintenance recommendation based on data-driven failure prediction. The example implementations can involve estimating the probability of having a failure event in the near future given sensor measurements and events from the equipment, and then alerts the system user or maintenance staff if the probability of failure exceeds a certain threshold. The example implementations utilize historical failure cases along with the associated sensor measurements and events to learn a group of classification models that differentiate between failure and non-failure cases. In example implementations, the system then chooses the optimal model for failure prediction such that the overall cost of the maintenance process is minimized.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210126&DB=EPODOC&CC=US&NR=10901832B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76517</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210126&DB=EPODOC&CC=US&NR=10901832B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ristovski, Kosta</creatorcontrib><creatorcontrib>Farahat, Ahmed Khairy</creatorcontrib><creatorcontrib>Gupta, Chetan</creatorcontrib><title>System for maintenance recommendation based on failure prediction</title><description>Example implementations described herein involve a system for maintenance recommendation based on data-driven failure prediction. The example implementations can involve estimating the probability of having a failure event in the near future given sensor measurements and events from the equipment, and then alerts the system user or maintenance staff if the probability of failure exceeds a certain threshold. The example implementations utilize historical failure cases along with the associated sensor measurements and events to learn a group of classification models that differentiate between failure and non-failure cases. In example implementations, the system then chooses the optimal model for failure prediction such that the overall cost of the maintenance process is minimized.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAMriwuSc1VSMsvUshNzMwrSc1LzEtOVShKTc7PzU3NS0ksyczPU0hKLE5NUQAy0hIzc0qLUhUKilJTMpNBcjwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDA0sDQwtjIyciYGDUAQSwyRQ</recordid><startdate>20210126</startdate><enddate>20210126</enddate><creator>Ristovski, Kosta</creator><creator>Farahat, Ahmed Khairy</creator><creator>Gupta, Chetan</creator><scope>EVB</scope></search><sort><creationdate>20210126</creationdate><title>System for maintenance recommendation based on failure prediction</title><author>Ristovski, Kosta ; Farahat, Ahmed Khairy ; Gupta, Chetan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10901832B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Ristovski, Kosta</creatorcontrib><creatorcontrib>Farahat, Ahmed Khairy</creatorcontrib><creatorcontrib>Gupta, Chetan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ristovski, Kosta</au><au>Farahat, Ahmed Khairy</au><au>Gupta, Chetan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System for maintenance recommendation based on failure prediction</title><date>2021-01-26</date><risdate>2021</risdate><abstract>Example implementations described herein involve a system for maintenance recommendation based on data-driven failure prediction. The example implementations can involve estimating the probability of having a failure event in the near future given sensor measurements and events from the equipment, and then alerts the system user or maintenance staff if the probability of failure exceeds a certain threshold. The example implementations utilize historical failure cases along with the associated sensor measurements and events to learn a group of classification models that differentiate between failure and non-failure cases. In example implementations, the system then chooses the optimal model for failure prediction such that the overall cost of the maintenance process is minimized.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10901832B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | System for maintenance recommendation based on failure prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Ristovski,%20Kosta&rft.date=2021-01-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10901832B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |