Dynamic distributed data clustering

Techniques are described for clustering data at the point of ingestion for storage using scalable storage resources. The clustering techniques described herein are used to cluster time series data in a manner such that data that is likely to be queried together is localized to a same partition, or t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rath, Timothy Andrew, Ozen, Mustafa Ozan
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Rath, Timothy Andrew
Ozen, Mustafa Ozan
description Techniques are described for clustering data at the point of ingestion for storage using scalable storage resources. The clustering techniques described herein are used to cluster time series data in a manner such that data that is likely to be queried together is localized to a same partition, or to a minimal set of partitions if the data set is large, where the partitions are mapped to physical storage resources where the data is to be stored for subsequent processing. Among other benefits, the clustered storage of the data at the physical storage resources can reduce an amount of data that needs to be filtered by many types of queries, thereby improving the performance of any applications or processes that rely on querying the data.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10884644B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10884644B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10884644B23</originalsourceid><addsrcrecordid>eNrjZFB2qcxLzM1MVkjJLC4pykwqLUlNUUhJLElUSM4pLS5JLcrMS-dhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYYGFhYmZiYmTkbGxKgBAAJDJuY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Dynamic distributed data clustering</title><source>esp@cenet</source><creator>Rath, Timothy Andrew ; Ozen, Mustafa Ozan</creator><creatorcontrib>Rath, Timothy Andrew ; Ozen, Mustafa Ozan</creatorcontrib><description>Techniques are described for clustering data at the point of ingestion for storage using scalable storage resources. The clustering techniques described herein are used to cluster time series data in a manner such that data that is likely to be queried together is localized to a same partition, or to a minimal set of partitions if the data set is large, where the partitions are mapped to physical storage resources where the data is to be stored for subsequent processing. Among other benefits, the clustered storage of the data at the physical storage resources can reduce an amount of data that needs to be filtered by many types of queries, thereby improving the performance of any applications or processes that rely on querying the data.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210105&amp;DB=EPODOC&amp;CC=US&amp;NR=10884644B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210105&amp;DB=EPODOC&amp;CC=US&amp;NR=10884644B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Rath, Timothy Andrew</creatorcontrib><creatorcontrib>Ozen, Mustafa Ozan</creatorcontrib><title>Dynamic distributed data clustering</title><description>Techniques are described for clustering data at the point of ingestion for storage using scalable storage resources. The clustering techniques described herein are used to cluster time series data in a manner such that data that is likely to be queried together is localized to a same partition, or to a minimal set of partitions if the data set is large, where the partitions are mapped to physical storage resources where the data is to be stored for subsequent processing. Among other benefits, the clustered storage of the data at the physical storage resources can reduce an amount of data that needs to be filtered by many types of queries, thereby improving the performance of any applications or processes that rely on querying the data.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFB2qcxLzM1MVkjJLC4pykwqLUlNUUhJLElUSM4pLS5JLcrMS-dhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYYGFhYmZiYmTkbGxKgBAAJDJuY</recordid><startdate>20210105</startdate><enddate>20210105</enddate><creator>Rath, Timothy Andrew</creator><creator>Ozen, Mustafa Ozan</creator><scope>EVB</scope></search><sort><creationdate>20210105</creationdate><title>Dynamic distributed data clustering</title><author>Rath, Timothy Andrew ; Ozen, Mustafa Ozan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10884644B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Rath, Timothy Andrew</creatorcontrib><creatorcontrib>Ozen, Mustafa Ozan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rath, Timothy Andrew</au><au>Ozen, Mustafa Ozan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Dynamic distributed data clustering</title><date>2021-01-05</date><risdate>2021</risdate><abstract>Techniques are described for clustering data at the point of ingestion for storage using scalable storage resources. The clustering techniques described herein are used to cluster time series data in a manner such that data that is likely to be queried together is localized to a same partition, or to a minimal set of partitions if the data set is large, where the partitions are mapped to physical storage resources where the data is to be stored for subsequent processing. Among other benefits, the clustered storage of the data at the physical storage resources can reduce an amount of data that needs to be filtered by many types of queries, thereby improving the performance of any applications or processes that rely on querying the data.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10884644B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Dynamic distributed data clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Rath,%20Timothy%20Andrew&rft.date=2021-01-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10884644B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true