Symptom detection using behavior probability density, network monitoring of multiple observation value types, and network monitoring using orthogonal profiling dimensions

Yet another network monitoring system includes data structures for maintaining information regarding historical activity of a network and emergent activity of a network. Those data structures include observable values for multiple profile dimensions, including source/destination address, application...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pan, Xiaohong, Sanders, Derek, Kakatkar, Kishor, Jagannathan, Rangaswamy, Lee, Rosanna
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Pan, Xiaohong
Sanders, Derek
Kakatkar, Kishor
Jagannathan, Rangaswamy
Lee, Rosanna
description Yet another network monitoring system includes data structures for maintaining information regarding historical activity of a network and emergent activity of a network. Those data structures include observable values for multiple profile dimensions, including source/destination address, application, location, and time. The data structures also include observable values for combinations of more than one of those multiple profile dimensions, including, e.g., (source address)×(application), and the like. It is expected that only a relatively sparse set of combinations of more than one of those multiple profile dimensions would have meaningful information associated therewith. The network monitoring system maintains those data structures only for those combinations of more than one of those multiple profile dimensions for which maintaining that information would be substantially meaningful.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10855708B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10855708B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10855708B13</originalsourceid><addsrcrecordid>eNqNjbEOgjAURVkcjPoPzx0TiDEyazTu6EwKPKCx7WvaB4Zf8ist6ujgdJObe-6ZR8981JZJQ42MFUsy0HtpWiixE4MkB9ZRKUqpJI9hZHzIGAzyg9wdNBnJ5CaAGtC9YmkVApUe3SDed4NQPQKPFn0MwtS_2I-SHHfUkhFqkjZBGcpa6klKxi-jWSOUx9U3F9H6fLoeLxu0VKC3osJwXdzyNMl2u32SHdLtP5sXrUpbxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Symptom detection using behavior probability density, network monitoring of multiple observation value types, and network monitoring using orthogonal profiling dimensions</title><source>esp@cenet</source><creator>Pan, Xiaohong ; Sanders, Derek ; Kakatkar, Kishor ; Jagannathan, Rangaswamy ; Lee, Rosanna</creator><creatorcontrib>Pan, Xiaohong ; Sanders, Derek ; Kakatkar, Kishor ; Jagannathan, Rangaswamy ; Lee, Rosanna</creatorcontrib><description>Yet another network monitoring system includes data structures for maintaining information regarding historical activity of a network and emergent activity of a network. Those data structures include observable values for multiple profile dimensions, including source/destination address, application, location, and time. The data structures also include observable values for combinations of more than one of those multiple profile dimensions, including, e.g., (source address)×(application), and the like. It is expected that only a relatively sparse set of combinations of more than one of those multiple profile dimensions would have meaningful information associated therewith. The network monitoring system maintains those data structures only for those combinations of more than one of those multiple profile dimensions for which maintaining that information would be substantially meaningful.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201201&amp;DB=EPODOC&amp;CC=US&amp;NR=10855708B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201201&amp;DB=EPODOC&amp;CC=US&amp;NR=10855708B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Pan, Xiaohong</creatorcontrib><creatorcontrib>Sanders, Derek</creatorcontrib><creatorcontrib>Kakatkar, Kishor</creatorcontrib><creatorcontrib>Jagannathan, Rangaswamy</creatorcontrib><creatorcontrib>Lee, Rosanna</creatorcontrib><title>Symptom detection using behavior probability density, network monitoring of multiple observation value types, and network monitoring using orthogonal profiling dimensions</title><description>Yet another network monitoring system includes data structures for maintaining information regarding historical activity of a network and emergent activity of a network. Those data structures include observable values for multiple profile dimensions, including source/destination address, application, location, and time. The data structures also include observable values for combinations of more than one of those multiple profile dimensions, including, e.g., (source address)×(application), and the like. It is expected that only a relatively sparse set of combinations of more than one of those multiple profile dimensions would have meaningful information associated therewith. The network monitoring system maintains those data structures only for those combinations of more than one of those multiple profile dimensions for which maintaining that information would be substantially meaningful.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjbEOgjAURVkcjPoPzx0TiDEyazTu6EwKPKCx7WvaB4Zf8ist6ujgdJObe-6ZR8981JZJQ42MFUsy0HtpWiixE4MkB9ZRKUqpJI9hZHzIGAzyg9wdNBnJ5CaAGtC9YmkVApUe3SDed4NQPQKPFn0MwtS_2I-SHHfUkhFqkjZBGcpa6klKxi-jWSOUx9U3F9H6fLoeLxu0VKC3osJwXdzyNMl2u32SHdLtP5sXrUpbxg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Pan, Xiaohong</creator><creator>Sanders, Derek</creator><creator>Kakatkar, Kishor</creator><creator>Jagannathan, Rangaswamy</creator><creator>Lee, Rosanna</creator><scope>EVB</scope></search><sort><creationdate>20201201</creationdate><title>Symptom detection using behavior probability density, network monitoring of multiple observation value types, and network monitoring using orthogonal profiling dimensions</title><author>Pan, Xiaohong ; Sanders, Derek ; Kakatkar, Kishor ; Jagannathan, Rangaswamy ; Lee, Rosanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10855708B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Pan, Xiaohong</creatorcontrib><creatorcontrib>Sanders, Derek</creatorcontrib><creatorcontrib>Kakatkar, Kishor</creatorcontrib><creatorcontrib>Jagannathan, Rangaswamy</creatorcontrib><creatorcontrib>Lee, Rosanna</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pan, Xiaohong</au><au>Sanders, Derek</au><au>Kakatkar, Kishor</au><au>Jagannathan, Rangaswamy</au><au>Lee, Rosanna</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Symptom detection using behavior probability density, network monitoring of multiple observation value types, and network monitoring using orthogonal profiling dimensions</title><date>2020-12-01</date><risdate>2020</risdate><abstract>Yet another network monitoring system includes data structures for maintaining information regarding historical activity of a network and emergent activity of a network. Those data structures include observable values for multiple profile dimensions, including source/destination address, application, location, and time. The data structures also include observable values for combinations of more than one of those multiple profile dimensions, including, e.g., (source address)×(application), and the like. It is expected that only a relatively sparse set of combinations of more than one of those multiple profile dimensions would have meaningful information associated therewith. The network monitoring system maintains those data structures only for those combinations of more than one of those multiple profile dimensions for which maintaining that information would be substantially meaningful.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10855708B1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Symptom detection using behavior probability density, network monitoring of multiple observation value types, and network monitoring using orthogonal profiling dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Pan,%20Xiaohong&rft.date=2020-12-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10855708B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true