Machine learning models for evaluating differences between groups and methods thereof

Systems, methods, and computer readable media are disclosed for generating, modifying, and using machine learning models to predict and evaluate differences between groups. Methods disclosed herein may include identifying variables that characterize members of a first group, generating shift indicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yan, Fenglin, Shao, Ruoyu, Repaka, Vikramaditya
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Yan, Fenglin
Shao, Ruoyu
Repaka, Vikramaditya
description Systems, methods, and computer readable media are disclosed for generating, modifying, and using machine learning models to predict and evaluate differences between groups. Methods disclosed herein may include identifying variables that characterize members of a first group, generating shift indicators using the identified variables, generating a machine learning model using the shift indicators and the first group, using the machine learning model and the group to predict shifts between the first group and a predicted second group, determining an aggregate population shift and an aggregate performance shift between the first group and an actual second group, and identifying an impact of one or more of the shift indicators on the aggregate population shift or performance shift. Systems and methods disclosed herein may be configured to receive requests to predict and evaluate differences between group, and to return such predictions and evaluations to one or more users.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10839318B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10839318B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10839318B23</originalsourceid><addsrcrecordid>eNqNyrEKwjAURuEuDqK-w_UBBGuWuiqKi5N2LtfmTxNIb0KS6uur4AM4HTh886q9cm-dgDw4iZOBxqDhM5mQCE_2E5fv1c4YJEiPTA-UFyA0pDDFTCyaRhQbdKZiPyiYZTUz7DNWvy6q9fl0P142iKFDjtxDULr2Vm8btVd1c9ipf8wbEes5zg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning models for evaluating differences between groups and methods thereof</title><source>esp@cenet</source><creator>Yan, Fenglin ; Shao, Ruoyu ; Repaka, Vikramaditya</creator><creatorcontrib>Yan, Fenglin ; Shao, Ruoyu ; Repaka, Vikramaditya</creatorcontrib><description>Systems, methods, and computer readable media are disclosed for generating, modifying, and using machine learning models to predict and evaluate differences between groups. Methods disclosed herein may include identifying variables that characterize members of a first group, generating shift indicators using the identified variables, generating a machine learning model using the shift indicators and the first group, using the machine learning model and the group to predict shifts between the first group and a predicted second group, determining an aggregate population shift and an aggregate performance shift between the first group and an actual second group, and identifying an impact of one or more of the shift indicators on the aggregate population shift or performance shift. Systems and methods disclosed herein may be configured to receive requests to predict and evaluate differences between group, and to return such predictions and evaluations to one or more users.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201117&amp;DB=EPODOC&amp;CC=US&amp;NR=10839318B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201117&amp;DB=EPODOC&amp;CC=US&amp;NR=10839318B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Yan, Fenglin</creatorcontrib><creatorcontrib>Shao, Ruoyu</creatorcontrib><creatorcontrib>Repaka, Vikramaditya</creatorcontrib><title>Machine learning models for evaluating differences between groups and methods thereof</title><description>Systems, methods, and computer readable media are disclosed for generating, modifying, and using machine learning models to predict and evaluate differences between groups. Methods disclosed herein may include identifying variables that characterize members of a first group, generating shift indicators using the identified variables, generating a machine learning model using the shift indicators and the first group, using the machine learning model and the group to predict shifts between the first group and a predicted second group, determining an aggregate population shift and an aggregate performance shift between the first group and an actual second group, and identifying an impact of one or more of the shift indicators on the aggregate population shift or performance shift. Systems and methods disclosed herein may be configured to receive requests to predict and evaluate differences between group, and to return such predictions and evaluations to one or more users.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAURuEuDqK-w_UBBGuWuiqKi5N2LtfmTxNIb0KS6uur4AM4HTh886q9cm-dgDw4iZOBxqDhM5mQCE_2E5fv1c4YJEiPTA-UFyA0pDDFTCyaRhQbdKZiPyiYZTUz7DNWvy6q9fl0P142iKFDjtxDULr2Vm8btVd1c9ipf8wbEes5zg</recordid><startdate>20201117</startdate><enddate>20201117</enddate><creator>Yan, Fenglin</creator><creator>Shao, Ruoyu</creator><creator>Repaka, Vikramaditya</creator><scope>EVB</scope></search><sort><creationdate>20201117</creationdate><title>Machine learning models for evaluating differences between groups and methods thereof</title><author>Yan, Fenglin ; Shao, Ruoyu ; Repaka, Vikramaditya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10839318B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Yan, Fenglin</creatorcontrib><creatorcontrib>Shao, Ruoyu</creatorcontrib><creatorcontrib>Repaka, Vikramaditya</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, Fenglin</au><au>Shao, Ruoyu</au><au>Repaka, Vikramaditya</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning models for evaluating differences between groups and methods thereof</title><date>2020-11-17</date><risdate>2020</risdate><abstract>Systems, methods, and computer readable media are disclosed for generating, modifying, and using machine learning models to predict and evaluate differences between groups. Methods disclosed herein may include identifying variables that characterize members of a first group, generating shift indicators using the identified variables, generating a machine learning model using the shift indicators and the first group, using the machine learning model and the group to predict shifts between the first group and a predicted second group, determining an aggregate population shift and an aggregate performance shift between the first group and an actual second group, and identifying an impact of one or more of the shift indicators on the aggregate population shift or performance shift. Systems and methods disclosed herein may be configured to receive requests to predict and evaluate differences between group, and to return such predictions and evaluations to one or more users.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10839318B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Machine learning models for evaluating differences between groups and methods thereof
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Yan,%20Fenglin&rft.date=2020-11-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10839318B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true