Segmentation guided image generation with adversarial networks

Embodiments provide methods and systems for image generation through use of adversarial networks. An embodiment trains an image generator comprising (i) a generator implemented with a first neural network configured to generate a fake image based on a target segmentation, (ii) a discriminator implem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fu, Yun, Jiang, Songyao
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Fu, Yun
Jiang, Songyao
description Embodiments provide methods and systems for image generation through use of adversarial networks. An embodiment trains an image generator comprising (i) a generator implemented with a first neural network configured to generate a fake image based on a target segmentation, (ii) a discriminator implemented with a second neural network configured to distinguish a real image from a fake image and output a discrimination result as a function thereof and (iii) a segmentor implemented with a third neural network configured to generate a segmentation from the fake image. The training includes (i) operating the generator to output the fake image to the discriminator and the segmentor and (ii) iteratively operating the generator, discriminator, and segmentor during a training period, whereby the discriminator and generator train in an adversarial relationship with each other and the generator and segmentor train in a collaborative relationship with each other.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10825219B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10825219B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10825219B23</originalsourceid><addsrcrecordid>eNrjZLALTk3PTc0rSSzJzM9TSC_NTElNUcjMTUxPVUhPzUstgoiXZ5ZkKCSmlKUWFScWZSbmKOSllpTnF2UX8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxGSgISXxocGGBhZGpkaGlk5GxsSoAQCqYTFn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Segmentation guided image generation with adversarial networks</title><source>esp@cenet</source><creator>Fu, Yun ; Jiang, Songyao</creator><creatorcontrib>Fu, Yun ; Jiang, Songyao</creatorcontrib><description>Embodiments provide methods and systems for image generation through use of adversarial networks. An embodiment trains an image generator comprising (i) a generator implemented with a first neural network configured to generate a fake image based on a target segmentation, (ii) a discriminator implemented with a second neural network configured to distinguish a real image from a fake image and output a discrimination result as a function thereof and (iii) a segmentor implemented with a third neural network configured to generate a segmentation from the fake image. The training includes (i) operating the generator to output the fake image to the discriminator and the segmentor and (ii) iteratively operating the generator, discriminator, and segmentor during a training period, whereby the discriminator and generator train in an adversarial relationship with each other and the generator and segmentor train in a collaborative relationship with each other.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201103&amp;DB=EPODOC&amp;CC=US&amp;NR=10825219B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201103&amp;DB=EPODOC&amp;CC=US&amp;NR=10825219B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Fu, Yun</creatorcontrib><creatorcontrib>Jiang, Songyao</creatorcontrib><title>Segmentation guided image generation with adversarial networks</title><description>Embodiments provide methods and systems for image generation through use of adversarial networks. An embodiment trains an image generator comprising (i) a generator implemented with a first neural network configured to generate a fake image based on a target segmentation, (ii) a discriminator implemented with a second neural network configured to distinguish a real image from a fake image and output a discrimination result as a function thereof and (iii) a segmentor implemented with a third neural network configured to generate a segmentation from the fake image. The training includes (i) operating the generator to output the fake image to the discriminator and the segmentor and (ii) iteratively operating the generator, discriminator, and segmentor during a training period, whereby the discriminator and generator train in an adversarial relationship with each other and the generator and segmentor train in a collaborative relationship with each other.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLALTk3PTc0rSSzJzM9TSC_NTElNUcjMTUxPVUhPzUstgoiXZ5ZkKCSmlKUWFScWZSbmKOSllpTnF2UX8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxGSgISXxocGGBhZGpkaGlk5GxsSoAQCqYTFn</recordid><startdate>20201103</startdate><enddate>20201103</enddate><creator>Fu, Yun</creator><creator>Jiang, Songyao</creator><scope>EVB</scope></search><sort><creationdate>20201103</creationdate><title>Segmentation guided image generation with adversarial networks</title><author>Fu, Yun ; Jiang, Songyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10825219B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Yun</creatorcontrib><creatorcontrib>Jiang, Songyao</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu, Yun</au><au>Jiang, Songyao</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Segmentation guided image generation with adversarial networks</title><date>2020-11-03</date><risdate>2020</risdate><abstract>Embodiments provide methods and systems for image generation through use of adversarial networks. An embodiment trains an image generator comprising (i) a generator implemented with a first neural network configured to generate a fake image based on a target segmentation, (ii) a discriminator implemented with a second neural network configured to distinguish a real image from a fake image and output a discrimination result as a function thereof and (iii) a segmentor implemented with a third neural network configured to generate a segmentation from the fake image. The training includes (i) operating the generator to output the fake image to the discriminator and the segmentor and (ii) iteratively operating the generator, discriminator, and segmentor during a training period, whereby the discriminator and generator train in an adversarial relationship with each other and the generator and segmentor train in a collaborative relationship with each other.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10825219B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Segmentation guided image generation with adversarial networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Fu,%20Yun&rft.date=2020-11-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10825219B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true