Predictive model clustering

Performing data clustering in a model property vector space. Input data is received comprising a plurality of data instances in a data vector space. A model property vector specification is defined for a model vector. Information is identified from the input data, and a model property vector is crea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cogill, Randall L, Bouillet, Eric, Sheehan, John, Hoang, Thanh L, Chen, Bei, Nair, Rahul, Laumanns, Marco, Lynch, Karol W, Pompey, Pascal
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Cogill, Randall L
Bouillet, Eric
Sheehan, John
Hoang, Thanh L
Chen, Bei
Nair, Rahul
Laumanns, Marco
Lynch, Karol W
Pompey, Pascal
description Performing data clustering in a model property vector space. Input data is received comprising a plurality of data instances in a data vector space. A model property vector specification is defined for a model vector. Information is identified from the input data, and a model property vector is created in the model property vector space for each of the plurality of data instances. A target number of clusters is identified and used to perform a data clustering procedure. An output is generated comprising a plurality of data segments and one or more clustering rules. For each data cluster, a predictive model is constructed for each data segment of the plurality of data segments.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10769193B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10769193B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10769193B23</originalsourceid><addsrcrecordid>eNrjZJAOKEpNyUwuySxLVcjNT0nNUUjOKS0uSS3KzEvnYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGBuZmloaWxk5GxsSoAQCU2CPe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Predictive model clustering</title><source>esp@cenet</source><creator>Cogill, Randall L ; Bouillet, Eric ; Sheehan, John ; Hoang, Thanh L ; Chen, Bei ; Nair, Rahul ; Laumanns, Marco ; Lynch, Karol W ; Pompey, Pascal</creator><creatorcontrib>Cogill, Randall L ; Bouillet, Eric ; Sheehan, John ; Hoang, Thanh L ; Chen, Bei ; Nair, Rahul ; Laumanns, Marco ; Lynch, Karol W ; Pompey, Pascal</creatorcontrib><description>Performing data clustering in a model property vector space. Input data is received comprising a plurality of data instances in a data vector space. A model property vector specification is defined for a model vector. Information is identified from the input data, and a model property vector is created in the model property vector space for each of the plurality of data instances. A target number of clusters is identified and used to perform a data clustering procedure. An output is generated comprising a plurality of data segments and one or more clustering rules. For each data cluster, a predictive model is constructed for each data segment of the plurality of data segments.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200908&amp;DB=EPODOC&amp;CC=US&amp;NR=10769193B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200908&amp;DB=EPODOC&amp;CC=US&amp;NR=10769193B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Cogill, Randall L</creatorcontrib><creatorcontrib>Bouillet, Eric</creatorcontrib><creatorcontrib>Sheehan, John</creatorcontrib><creatorcontrib>Hoang, Thanh L</creatorcontrib><creatorcontrib>Chen, Bei</creatorcontrib><creatorcontrib>Nair, Rahul</creatorcontrib><creatorcontrib>Laumanns, Marco</creatorcontrib><creatorcontrib>Lynch, Karol W</creatorcontrib><creatorcontrib>Pompey, Pascal</creatorcontrib><title>Predictive model clustering</title><description>Performing data clustering in a model property vector space. Input data is received comprising a plurality of data instances in a data vector space. A model property vector specification is defined for a model vector. Information is identified from the input data, and a model property vector is created in the model property vector space for each of the plurality of data instances. A target number of clusters is identified and used to perform a data clustering procedure. An output is generated comprising a plurality of data segments and one or more clustering rules. For each data cluster, a predictive model is constructed for each data segment of the plurality of data segments.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJAOKEpNyUwuySxLVcjNT0nNUUjOKS0uSS3KzEvnYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGBuZmloaWxk5GxsSoAQCU2CPe</recordid><startdate>20200908</startdate><enddate>20200908</enddate><creator>Cogill, Randall L</creator><creator>Bouillet, Eric</creator><creator>Sheehan, John</creator><creator>Hoang, Thanh L</creator><creator>Chen, Bei</creator><creator>Nair, Rahul</creator><creator>Laumanns, Marco</creator><creator>Lynch, Karol W</creator><creator>Pompey, Pascal</creator><scope>EVB</scope></search><sort><creationdate>20200908</creationdate><title>Predictive model clustering</title><author>Cogill, Randall L ; Bouillet, Eric ; Sheehan, John ; Hoang, Thanh L ; Chen, Bei ; Nair, Rahul ; Laumanns, Marco ; Lynch, Karol W ; Pompey, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10769193B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Cogill, Randall L</creatorcontrib><creatorcontrib>Bouillet, Eric</creatorcontrib><creatorcontrib>Sheehan, John</creatorcontrib><creatorcontrib>Hoang, Thanh L</creatorcontrib><creatorcontrib>Chen, Bei</creatorcontrib><creatorcontrib>Nair, Rahul</creatorcontrib><creatorcontrib>Laumanns, Marco</creatorcontrib><creatorcontrib>Lynch, Karol W</creatorcontrib><creatorcontrib>Pompey, Pascal</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cogill, Randall L</au><au>Bouillet, Eric</au><au>Sheehan, John</au><au>Hoang, Thanh L</au><au>Chen, Bei</au><au>Nair, Rahul</au><au>Laumanns, Marco</au><au>Lynch, Karol W</au><au>Pompey, Pascal</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Predictive model clustering</title><date>2020-09-08</date><risdate>2020</risdate><abstract>Performing data clustering in a model property vector space. Input data is received comprising a plurality of data instances in a data vector space. A model property vector specification is defined for a model vector. Information is identified from the input data, and a model property vector is created in the model property vector space for each of the plurality of data instances. A target number of clusters is identified and used to perform a data clustering procedure. An output is generated comprising a plurality of data segments and one or more clustering rules. For each data cluster, a predictive model is constructed for each data segment of the plurality of data segments.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10769193B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Predictive model clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Cogill,%20Randall%20L&rft.date=2020-09-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10769193B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true