Tuning context-aware rule engine for anomaly detection
The technology disclosed relates to building ensemble analytic rules for reusable operators and tuning an operations monitoring system. In particular, it relates to analyzing a metric stream by applying an ensemble analytical rule. After analysis of the metric stream by applying the ensemble analyti...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Chettiar, Uday K Velipasaoglu, Omer Emre Abdelhafez, Mohamed A Sasturkar, Amit Kejariwal, Arun Jain, Dhruv Hemchand Surana, Vishal |
description | The technology disclosed relates to building ensemble analytic rules for reusable operators and tuning an operations monitoring system. In particular, it relates to analyzing a metric stream by applying an ensemble analytical rule. After analysis of the metric stream by applying the ensemble analytical rule, quantized results are fed back for expert analysis. Then, one or more type I or type II errors are identified in the quantized results, and one or more of the parameters of the operators are automatically adjusted to correct the identified errors. The metric stream is further analyzed by applying the ensemble analytical rule with the automatically adjusted parameters. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10698757B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10698757B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10698757B23</originalsourceid><addsrcrecordid>eNrjZDALKc3LzEtXSM7PK0mtKNFNLE8sSlUoKs1JVUjNS8_MS1VIyy9SSMzLz03MqVRISS1JTS7JzM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGBmaWFuam5k5GxsSoAQC5yS4D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Tuning context-aware rule engine for anomaly detection</title><source>esp@cenet</source><creator>Chettiar, Uday K ; Velipasaoglu, Omer Emre ; Abdelhafez, Mohamed A ; Sasturkar, Amit ; Kejariwal, Arun ; Jain, Dhruv Hemchand ; Surana, Vishal</creator><creatorcontrib>Chettiar, Uday K ; Velipasaoglu, Omer Emre ; Abdelhafez, Mohamed A ; Sasturkar, Amit ; Kejariwal, Arun ; Jain, Dhruv Hemchand ; Surana, Vishal</creatorcontrib><description>The technology disclosed relates to building ensemble analytic rules for reusable operators and tuning an operations monitoring system. In particular, it relates to analyzing a metric stream by applying an ensemble analytical rule. After analysis of the metric stream by applying the ensemble analytical rule, quantized results are fed back for expert analysis. Then, one or more type I or type II errors are identified in the quantized results, and one or more of the parameters of the operators are automatically adjusted to correct the identified errors. The metric stream is further analyzed by applying the ensemble analytical rule with the automatically adjusted parameters.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200630&DB=EPODOC&CC=US&NR=10698757B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25546,76297</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200630&DB=EPODOC&CC=US&NR=10698757B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chettiar, Uday K</creatorcontrib><creatorcontrib>Velipasaoglu, Omer Emre</creatorcontrib><creatorcontrib>Abdelhafez, Mohamed A</creatorcontrib><creatorcontrib>Sasturkar, Amit</creatorcontrib><creatorcontrib>Kejariwal, Arun</creatorcontrib><creatorcontrib>Jain, Dhruv Hemchand</creatorcontrib><creatorcontrib>Surana, Vishal</creatorcontrib><title>Tuning context-aware rule engine for anomaly detection</title><description>The technology disclosed relates to building ensemble analytic rules for reusable operators and tuning an operations monitoring system. In particular, it relates to analyzing a metric stream by applying an ensemble analytical rule. After analysis of the metric stream by applying the ensemble analytical rule, quantized results are fed back for expert analysis. Then, one or more type I or type II errors are identified in the quantized results, and one or more of the parameters of the operators are automatically adjusted to correct the identified errors. The metric stream is further analyzed by applying the ensemble analytical rule with the automatically adjusted parameters.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDALKc3LzEtXSM7PK0mtKNFNLE8sSlUoKs1JVUjNS8_MS1VIyy9SSMzLz03MqVRISS1JTS7JzM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGBmaWFuam5k5GxsSoAQC5yS4D</recordid><startdate>20200630</startdate><enddate>20200630</enddate><creator>Chettiar, Uday K</creator><creator>Velipasaoglu, Omer Emre</creator><creator>Abdelhafez, Mohamed A</creator><creator>Sasturkar, Amit</creator><creator>Kejariwal, Arun</creator><creator>Jain, Dhruv Hemchand</creator><creator>Surana, Vishal</creator><scope>EVB</scope></search><sort><creationdate>20200630</creationdate><title>Tuning context-aware rule engine for anomaly detection</title><author>Chettiar, Uday K ; Velipasaoglu, Omer Emre ; Abdelhafez, Mohamed A ; Sasturkar, Amit ; Kejariwal, Arun ; Jain, Dhruv Hemchand ; Surana, Vishal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10698757B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Chettiar, Uday K</creatorcontrib><creatorcontrib>Velipasaoglu, Omer Emre</creatorcontrib><creatorcontrib>Abdelhafez, Mohamed A</creatorcontrib><creatorcontrib>Sasturkar, Amit</creatorcontrib><creatorcontrib>Kejariwal, Arun</creatorcontrib><creatorcontrib>Jain, Dhruv Hemchand</creatorcontrib><creatorcontrib>Surana, Vishal</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chettiar, Uday K</au><au>Velipasaoglu, Omer Emre</au><au>Abdelhafez, Mohamed A</au><au>Sasturkar, Amit</au><au>Kejariwal, Arun</au><au>Jain, Dhruv Hemchand</au><au>Surana, Vishal</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Tuning context-aware rule engine for anomaly detection</title><date>2020-06-30</date><risdate>2020</risdate><abstract>The technology disclosed relates to building ensemble analytic rules for reusable operators and tuning an operations monitoring system. In particular, it relates to analyzing a metric stream by applying an ensemble analytical rule. After analysis of the metric stream by applying the ensemble analytical rule, quantized results are fed back for expert analysis. Then, one or more type I or type II errors are identified in the quantized results, and one or more of the parameters of the operators are automatically adjusted to correct the identified errors. The metric stream is further analyzed by applying the ensemble analytical rule with the automatically adjusted parameters.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10698757B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | Tuning context-aware rule engine for anomaly detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chettiar,%20Uday%20K&rft.date=2020-06-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10698757B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |