Tuning context-aware rule engine for anomaly detection

The technology disclosed relates to building ensemble analytic rules for reusable operators and tuning an operations monitoring system. In particular, it relates to analyzing a metric stream by applying an ensemble analytical rule. After analysis of the metric stream by applying the ensemble analyti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chettiar, Uday K, Velipasaoglu, Omer Emre, Abdelhafez, Mohamed A, Sasturkar, Amit, Kejariwal, Arun, Jain, Dhruv Hemchand, Surana, Vishal
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Chettiar, Uday K
Velipasaoglu, Omer Emre
Abdelhafez, Mohamed A
Sasturkar, Amit
Kejariwal, Arun
Jain, Dhruv Hemchand
Surana, Vishal
description The technology disclosed relates to building ensemble analytic rules for reusable operators and tuning an operations monitoring system. In particular, it relates to analyzing a metric stream by applying an ensemble analytical rule. After analysis of the metric stream by applying the ensemble analytical rule, quantized results are fed back for expert analysis. Then, one or more type I or type II errors are identified in the quantized results, and one or more of the parameters of the operators are automatically adjusted to correct the identified errors. The metric stream is further analyzed by applying the ensemble analytical rule with the automatically adjusted parameters.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10698757B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10698757B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10698757B23</originalsourceid><addsrcrecordid>eNrjZDALKc3LzEtXSM7PK0mtKNFNLE8sSlUoKs1JVUjNS8_MS1VIyy9SSMzLz03MqVRISS1JTS7JzM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGBmaWFuam5k5GxsSoAQC5yS4D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Tuning context-aware rule engine for anomaly detection</title><source>esp@cenet</source><creator>Chettiar, Uday K ; Velipasaoglu, Omer Emre ; Abdelhafez, Mohamed A ; Sasturkar, Amit ; Kejariwal, Arun ; Jain, Dhruv Hemchand ; Surana, Vishal</creator><creatorcontrib>Chettiar, Uday K ; Velipasaoglu, Omer Emre ; Abdelhafez, Mohamed A ; Sasturkar, Amit ; Kejariwal, Arun ; Jain, Dhruv Hemchand ; Surana, Vishal</creatorcontrib><description>The technology disclosed relates to building ensemble analytic rules for reusable operators and tuning an operations monitoring system. In particular, it relates to analyzing a metric stream by applying an ensemble analytical rule. After analysis of the metric stream by applying the ensemble analytical rule, quantized results are fed back for expert analysis. Then, one or more type I or type II errors are identified in the quantized results, and one or more of the parameters of the operators are automatically adjusted to correct the identified errors. The metric stream is further analyzed by applying the ensemble analytical rule with the automatically adjusted parameters.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200630&amp;DB=EPODOC&amp;CC=US&amp;NR=10698757B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25546,76297</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200630&amp;DB=EPODOC&amp;CC=US&amp;NR=10698757B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chettiar, Uday K</creatorcontrib><creatorcontrib>Velipasaoglu, Omer Emre</creatorcontrib><creatorcontrib>Abdelhafez, Mohamed A</creatorcontrib><creatorcontrib>Sasturkar, Amit</creatorcontrib><creatorcontrib>Kejariwal, Arun</creatorcontrib><creatorcontrib>Jain, Dhruv Hemchand</creatorcontrib><creatorcontrib>Surana, Vishal</creatorcontrib><title>Tuning context-aware rule engine for anomaly detection</title><description>The technology disclosed relates to building ensemble analytic rules for reusable operators and tuning an operations monitoring system. In particular, it relates to analyzing a metric stream by applying an ensemble analytical rule. After analysis of the metric stream by applying the ensemble analytical rule, quantized results are fed back for expert analysis. Then, one or more type I or type II errors are identified in the quantized results, and one or more of the parameters of the operators are automatically adjusted to correct the identified errors. The metric stream is further analyzed by applying the ensemble analytical rule with the automatically adjusted parameters.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDALKc3LzEtXSM7PK0mtKNFNLE8sSlUoKs1JVUjNS8_MS1VIyy9SSMzLz03MqVRISS1JTS7JzM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGBmaWFuam5k5GxsSoAQC5yS4D</recordid><startdate>20200630</startdate><enddate>20200630</enddate><creator>Chettiar, Uday K</creator><creator>Velipasaoglu, Omer Emre</creator><creator>Abdelhafez, Mohamed A</creator><creator>Sasturkar, Amit</creator><creator>Kejariwal, Arun</creator><creator>Jain, Dhruv Hemchand</creator><creator>Surana, Vishal</creator><scope>EVB</scope></search><sort><creationdate>20200630</creationdate><title>Tuning context-aware rule engine for anomaly detection</title><author>Chettiar, Uday K ; Velipasaoglu, Omer Emre ; Abdelhafez, Mohamed A ; Sasturkar, Amit ; Kejariwal, Arun ; Jain, Dhruv Hemchand ; Surana, Vishal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10698757B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Chettiar, Uday K</creatorcontrib><creatorcontrib>Velipasaoglu, Omer Emre</creatorcontrib><creatorcontrib>Abdelhafez, Mohamed A</creatorcontrib><creatorcontrib>Sasturkar, Amit</creatorcontrib><creatorcontrib>Kejariwal, Arun</creatorcontrib><creatorcontrib>Jain, Dhruv Hemchand</creatorcontrib><creatorcontrib>Surana, Vishal</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chettiar, Uday K</au><au>Velipasaoglu, Omer Emre</au><au>Abdelhafez, Mohamed A</au><au>Sasturkar, Amit</au><au>Kejariwal, Arun</au><au>Jain, Dhruv Hemchand</au><au>Surana, Vishal</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Tuning context-aware rule engine for anomaly detection</title><date>2020-06-30</date><risdate>2020</risdate><abstract>The technology disclosed relates to building ensemble analytic rules for reusable operators and tuning an operations monitoring system. In particular, it relates to analyzing a metric stream by applying an ensemble analytical rule. After analysis of the metric stream by applying the ensemble analytical rule, quantized results are fed back for expert analysis. Then, one or more type I or type II errors are identified in the quantized results, and one or more of the parameters of the operators are automatically adjusted to correct the identified errors. The metric stream is further analyzed by applying the ensemble analytical rule with the automatically adjusted parameters.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10698757B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Tuning context-aware rule engine for anomaly detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chettiar,%20Uday%20K&rft.date=2020-06-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10698757B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true