Machine learned models for contextual editing of social networking profiles

In an example, first and second machine learned models corresponding to a particular context of a social networking service are obtained, the first machine learned model trained via a first machine learning algorithm to output an indication of importance of a social networking profile field to obtai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liang, Ningfeng, Lu, Wei, Bajaj, Lokesh P, Ahuja, Karan Ashok, Wu, Qiang, Chatterjee, Shaunak, Ghosh, Souvik, Li, Yang, Deng, Wei, Ayenew Ejigou, Befekadu, Wang, Wei, Fletcher, Paul
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Liang, Ningfeng
Lu, Wei
Bajaj, Lokesh P
Ahuja, Karan Ashok
Wu, Qiang
Chatterjee, Shaunak
Ghosh, Souvik
Li, Yang
Deng, Wei
Ayenew Ejigou, Befekadu
Wang, Wei
Fletcher, Paul
description In an example, first and second machine learned models corresponding to a particular context of a social networking service are obtained, the first machine learned model trained via a first machine learning algorithm to output an indication of importance of a social networking profile field to obtaining results in the particular context, and the second machine learned model trained via a second machine learning algorithm to output a propensity of the user to edit a social networking profile field if requested. One or more missing fields in a social networking profile for the user are identified. For each of one or more of the one or more missing fields, the field and an identification of the user are passed through the first and second machine learned models, and outputs of the first and second machine learned models are combined to identify one or more top missing profile fields.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10678997B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10678997B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10678997B23</originalsourceid><addsrcrecordid>eNrjZPD2TUzOyMxLVchJTSzKS01RyM1PSc0pVkjLL1JIzs8rSa0oKU3MUUhNySzJzEtXyE9TKM5PzgSK5KWWlOcXZYMEC4ry0zJzUot5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicipQV3xosKGBmbmFpaW5k5ExMWoAi8c2Jg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learned models for contextual editing of social networking profiles</title><source>esp@cenet</source><creator>Liang, Ningfeng ; Lu, Wei ; Bajaj, Lokesh P ; Ahuja, Karan Ashok ; Wu, Qiang ; Chatterjee, Shaunak ; Ghosh, Souvik ; Li, Yang ; Deng, Wei ; Ayenew Ejigou, Befekadu ; Wang, Wei ; Fletcher, Paul</creator><creatorcontrib>Liang, Ningfeng ; Lu, Wei ; Bajaj, Lokesh P ; Ahuja, Karan Ashok ; Wu, Qiang ; Chatterjee, Shaunak ; Ghosh, Souvik ; Li, Yang ; Deng, Wei ; Ayenew Ejigou, Befekadu ; Wang, Wei ; Fletcher, Paul</creatorcontrib><description>In an example, first and second machine learned models corresponding to a particular context of a social networking service are obtained, the first machine learned model trained via a first machine learning algorithm to output an indication of importance of a social networking profile field to obtaining results in the particular context, and the second machine learned model trained via a second machine learning algorithm to output a propensity of the user to edit a social networking profile field if requested. One or more missing fields in a social networking profile for the user are identified. For each of one or more of the one or more missing fields, the field and an identification of the user are passed through the first and second machine learned models, and outputs of the first and second machine learned models are combined to identify one or more top missing profile fields.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200609&amp;DB=EPODOC&amp;CC=US&amp;NR=10678997B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200609&amp;DB=EPODOC&amp;CC=US&amp;NR=10678997B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Liang, Ningfeng</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Bajaj, Lokesh P</creatorcontrib><creatorcontrib>Ahuja, Karan Ashok</creatorcontrib><creatorcontrib>Wu, Qiang</creatorcontrib><creatorcontrib>Chatterjee, Shaunak</creatorcontrib><creatorcontrib>Ghosh, Souvik</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Deng, Wei</creatorcontrib><creatorcontrib>Ayenew Ejigou, Befekadu</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Fletcher, Paul</creatorcontrib><title>Machine learned models for contextual editing of social networking profiles</title><description>In an example, first and second machine learned models corresponding to a particular context of a social networking service are obtained, the first machine learned model trained via a first machine learning algorithm to output an indication of importance of a social networking profile field to obtaining results in the particular context, and the second machine learned model trained via a second machine learning algorithm to output a propensity of the user to edit a social networking profile field if requested. One or more missing fields in a social networking profile for the user are identified. For each of one or more of the one or more missing fields, the field and an identification of the user are passed through the first and second machine learned models, and outputs of the first and second machine learned models are combined to identify one or more top missing profile fields.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD2TUzOyMxLVchJTSzKS01RyM1PSc0pVkjLL1JIzs8rSa0oKU3MUUhNySzJzEtXyE9TKM5PzgSK5KWWlOcXZYMEC4ry0zJzUot5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicipQV3xosKGBmbmFpaW5k5ExMWoAi8c2Jg</recordid><startdate>20200609</startdate><enddate>20200609</enddate><creator>Liang, Ningfeng</creator><creator>Lu, Wei</creator><creator>Bajaj, Lokesh P</creator><creator>Ahuja, Karan Ashok</creator><creator>Wu, Qiang</creator><creator>Chatterjee, Shaunak</creator><creator>Ghosh, Souvik</creator><creator>Li, Yang</creator><creator>Deng, Wei</creator><creator>Ayenew Ejigou, Befekadu</creator><creator>Wang, Wei</creator><creator>Fletcher, Paul</creator><scope>EVB</scope></search><sort><creationdate>20200609</creationdate><title>Machine learned models for contextual editing of social networking profiles</title><author>Liang, Ningfeng ; Lu, Wei ; Bajaj, Lokesh P ; Ahuja, Karan Ashok ; Wu, Qiang ; Chatterjee, Shaunak ; Ghosh, Souvik ; Li, Yang ; Deng, Wei ; Ayenew Ejigou, Befekadu ; Wang, Wei ; Fletcher, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10678997B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang, Ningfeng</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Bajaj, Lokesh P</creatorcontrib><creatorcontrib>Ahuja, Karan Ashok</creatorcontrib><creatorcontrib>Wu, Qiang</creatorcontrib><creatorcontrib>Chatterjee, Shaunak</creatorcontrib><creatorcontrib>Ghosh, Souvik</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Deng, Wei</creatorcontrib><creatorcontrib>Ayenew Ejigou, Befekadu</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Fletcher, Paul</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Ningfeng</au><au>Lu, Wei</au><au>Bajaj, Lokesh P</au><au>Ahuja, Karan Ashok</au><au>Wu, Qiang</au><au>Chatterjee, Shaunak</au><au>Ghosh, Souvik</au><au>Li, Yang</au><au>Deng, Wei</au><au>Ayenew Ejigou, Befekadu</au><au>Wang, Wei</au><au>Fletcher, Paul</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learned models for contextual editing of social networking profiles</title><date>2020-06-09</date><risdate>2020</risdate><abstract>In an example, first and second machine learned models corresponding to a particular context of a social networking service are obtained, the first machine learned model trained via a first machine learning algorithm to output an indication of importance of a social networking profile field to obtaining results in the particular context, and the second machine learned model trained via a second machine learning algorithm to output a propensity of the user to edit a social networking profile field if requested. One or more missing fields in a social networking profile for the user are identified. For each of one or more of the one or more missing fields, the field and an identification of the user are passed through the first and second machine learned models, and outputs of the first and second machine learned models are combined to identify one or more top missing profile fields.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10678997B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Machine learned models for contextual editing of social networking profiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Liang,%20Ningfeng&rft.date=2020-06-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10678997B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true