Machine learned models for contextual editing of social networking profiles
In an example, first and second machine learned models corresponding to a particular context of a social networking service are obtained, the first machine learned model trained via a first machine learning algorithm to output an indication of importance of a social networking profile field to obtai...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Liang, Ningfeng Lu, Wei Bajaj, Lokesh P Ahuja, Karan Ashok Wu, Qiang Chatterjee, Shaunak Ghosh, Souvik Li, Yang Deng, Wei Ayenew Ejigou, Befekadu Wang, Wei Fletcher, Paul |
description | In an example, first and second machine learned models corresponding to a particular context of a social networking service are obtained, the first machine learned model trained via a first machine learning algorithm to output an indication of importance of a social networking profile field to obtaining results in the particular context, and the second machine learned model trained via a second machine learning algorithm to output a propensity of the user to edit a social networking profile field if requested. One or more missing fields in a social networking profile for the user are identified. For each of one or more of the one or more missing fields, the field and an identification of the user are passed through the first and second machine learned models, and outputs of the first and second machine learned models are combined to identify one or more top missing profile fields. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10678997B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10678997B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10678997B23</originalsourceid><addsrcrecordid>eNrjZPD2TUzOyMxLVchJTSzKS01RyM1PSc0pVkjLL1JIzs8rSa0oKU3MUUhNySzJzEtXyE9TKM5PzgSK5KWWlOcXZYMEC4ry0zJzUot5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicipQV3xosKGBmbmFpaW5k5ExMWoAi8c2Jg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learned models for contextual editing of social networking profiles</title><source>esp@cenet</source><creator>Liang, Ningfeng ; Lu, Wei ; Bajaj, Lokesh P ; Ahuja, Karan Ashok ; Wu, Qiang ; Chatterjee, Shaunak ; Ghosh, Souvik ; Li, Yang ; Deng, Wei ; Ayenew Ejigou, Befekadu ; Wang, Wei ; Fletcher, Paul</creator><creatorcontrib>Liang, Ningfeng ; Lu, Wei ; Bajaj, Lokesh P ; Ahuja, Karan Ashok ; Wu, Qiang ; Chatterjee, Shaunak ; Ghosh, Souvik ; Li, Yang ; Deng, Wei ; Ayenew Ejigou, Befekadu ; Wang, Wei ; Fletcher, Paul</creatorcontrib><description>In an example, first and second machine learned models corresponding to a particular context of a social networking service are obtained, the first machine learned model trained via a first machine learning algorithm to output an indication of importance of a social networking profile field to obtaining results in the particular context, and the second machine learned model trained via a second machine learning algorithm to output a propensity of the user to edit a social networking profile field if requested. One or more missing fields in a social networking profile for the user are identified. For each of one or more of the one or more missing fields, the field and an identification of the user are passed through the first and second machine learned models, and outputs of the first and second machine learned models are combined to identify one or more top missing profile fields.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200609&DB=EPODOC&CC=US&NR=10678997B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200609&DB=EPODOC&CC=US&NR=10678997B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Liang, Ningfeng</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Bajaj, Lokesh P</creatorcontrib><creatorcontrib>Ahuja, Karan Ashok</creatorcontrib><creatorcontrib>Wu, Qiang</creatorcontrib><creatorcontrib>Chatterjee, Shaunak</creatorcontrib><creatorcontrib>Ghosh, Souvik</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Deng, Wei</creatorcontrib><creatorcontrib>Ayenew Ejigou, Befekadu</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Fletcher, Paul</creatorcontrib><title>Machine learned models for contextual editing of social networking profiles</title><description>In an example, first and second machine learned models corresponding to a particular context of a social networking service are obtained, the first machine learned model trained via a first machine learning algorithm to output an indication of importance of a social networking profile field to obtaining results in the particular context, and the second machine learned model trained via a second machine learning algorithm to output a propensity of the user to edit a social networking profile field if requested. One or more missing fields in a social networking profile for the user are identified. For each of one or more of the one or more missing fields, the field and an identification of the user are passed through the first and second machine learned models, and outputs of the first and second machine learned models are combined to identify one or more top missing profile fields.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD2TUzOyMxLVchJTSzKS01RyM1PSc0pVkjLL1JIzs8rSa0oKU3MUUhNySzJzEtXyE9TKM5PzgSK5KWWlOcXZYMEC4ry0zJzUot5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicipQV3xosKGBmbmFpaW5k5ExMWoAi8c2Jg</recordid><startdate>20200609</startdate><enddate>20200609</enddate><creator>Liang, Ningfeng</creator><creator>Lu, Wei</creator><creator>Bajaj, Lokesh P</creator><creator>Ahuja, Karan Ashok</creator><creator>Wu, Qiang</creator><creator>Chatterjee, Shaunak</creator><creator>Ghosh, Souvik</creator><creator>Li, Yang</creator><creator>Deng, Wei</creator><creator>Ayenew Ejigou, Befekadu</creator><creator>Wang, Wei</creator><creator>Fletcher, Paul</creator><scope>EVB</scope></search><sort><creationdate>20200609</creationdate><title>Machine learned models for contextual editing of social networking profiles</title><author>Liang, Ningfeng ; Lu, Wei ; Bajaj, Lokesh P ; Ahuja, Karan Ashok ; Wu, Qiang ; Chatterjee, Shaunak ; Ghosh, Souvik ; Li, Yang ; Deng, Wei ; Ayenew Ejigou, Befekadu ; Wang, Wei ; Fletcher, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10678997B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang, Ningfeng</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Bajaj, Lokesh P</creatorcontrib><creatorcontrib>Ahuja, Karan Ashok</creatorcontrib><creatorcontrib>Wu, Qiang</creatorcontrib><creatorcontrib>Chatterjee, Shaunak</creatorcontrib><creatorcontrib>Ghosh, Souvik</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Deng, Wei</creatorcontrib><creatorcontrib>Ayenew Ejigou, Befekadu</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Fletcher, Paul</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Ningfeng</au><au>Lu, Wei</au><au>Bajaj, Lokesh P</au><au>Ahuja, Karan Ashok</au><au>Wu, Qiang</au><au>Chatterjee, Shaunak</au><au>Ghosh, Souvik</au><au>Li, Yang</au><au>Deng, Wei</au><au>Ayenew Ejigou, Befekadu</au><au>Wang, Wei</au><au>Fletcher, Paul</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learned models for contextual editing of social networking profiles</title><date>2020-06-09</date><risdate>2020</risdate><abstract>In an example, first and second machine learned models corresponding to a particular context of a social networking service are obtained, the first machine learned model trained via a first machine learning algorithm to output an indication of importance of a social networking profile field to obtaining results in the particular context, and the second machine learned model trained via a second machine learning algorithm to output a propensity of the user to edit a social networking profile field if requested. One or more missing fields in a social networking profile for the user are identified. For each of one or more of the one or more missing fields, the field and an identification of the user are passed through the first and second machine learned models, and outputs of the first and second machine learned models are combined to identify one or more top missing profile fields.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10678997B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC COMMUNICATION TECHNIQUE ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | Machine learned models for contextual editing of social networking profiles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Liang,%20Ningfeng&rft.date=2020-06-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10678997B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |